精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

Anthropic提出的Contextual RAG開源實現Open Contextual RAG來了

發布于 2024-10-31 14:19
瀏覽
0收藏

之前筆者曾介紹過Anthropic研究團隊提出的一種能夠顯著增強RAG性能的方法—Contextual RAG(??Anthropic提出Contextual Retrieval讓RAG再進化,大幅降低檢索失敗率??),雖然有詳細的介紹,但并沒有披露完整的實現源碼。不過,這一缺憾被Together計算團隊彌補,他們在GitHub 上發布了該技術的開源參考實現—Open Contextual RAG。

回顧:什么是 Contextual RAG?

Contextual RAG 是一種先進的 chunk 增強技術,它巧妙地利用LLM,比如claude,為每個文檔片段賦予更豐富的上下文。想象一下,如果我們的大腦在回憶某件事時,不僅能想起事件本身,還能自動聯想到相關的前因后果,這就是 Contextual RAG 試圖為LLM 賦予的能力。這種方法的實現顯著提高了文檔檢索的準確性,聯合重排序(reranking)使用,可以將檢索準確率提升高達 67%。

Anthropic提出的Contextual RAG開源實現Open Contextual RAG來了-AI.x社區

Contextual RAG 的工作流程如下:

  1. 上下文增強:對于文檔中的每個 chunk,系統會在其前面添加一段解釋性的上下文片段,幫助 chunk 更好地融入整個文檔的語境。這一步驟使用一個小型、高效的 LLM 來完成。
  2. 混合搜索:系統會同時使用稀疏(關鍵詞)和密集(語義)兩種方式對 chunk 進行嵌入。這就像是讓 AI 同時具備了字面理解和深層含義理解的能力。
  3. 排名融合:使用遞歸排名融合(Reciprocal Rank Fusion,RRF)算法來合并搜索結果。這個過程就像是在多個專家意見中尋找最佳答案。
  4. 重排序:系統會檢索前 150 個chunks,然后通過一個專門的重排序模型篩選出 top 20 。這一步確保了最相關的信息被推到最前面。
  5. 答案生成:最后,將這 20 個精選 chunks 傳遞給一個大型 LLM,生成最終答案。

在Open Contextual RAG具體細節實現:

0).安裝依賴

!pip install together # To access open source LLMs
!pip install --upgrade tiktoken # To count total token counts
!pip install beautifulsoup4 # To scrape documents to RAG over
!pip install bm25s # To implement out key-word BM25 search

1)索引階段(一次性):


Anthropic提出的Contextual RAG開源實現Open Contextual RAG來了-AI.x社區


1. 數據處理和分塊

# Let's download the essay from Paul Graham's website

import requests
from bs4 import BeautifulSoup

def scrape_pg_essay():

    url = 'https://paulgraham.com/foundermode.html'

    try:
        # Send GET request to the URL
        response = requests.get(url)
        response.raise_for_status()  # Raise an error for bad status codes

        # Parse the HTML content
        soup = BeautifulSoup(response.text, 'html.parser')

        # Paul Graham's essays typically have the main content in a font tag
        # You might need to adjust this selector based on the actual HTML structure
        content = soup.find('font')

        if content:
            # Extract and clean the text
            text = content.get_text()
            # Remove extra whitespace and normalize line breaks
            text = ' '.join(text.split())
            return text
        else:
            return "Could not find the main content of the essay."

    except requests.RequestException as e:
        return f"Error fetching the webpage: {e}"

# Scrape the essay
pg_essay = scrape_pg_essay()

def create_chunks(document, chunk_size=300, overlap=50):
    return [document[i : i + chunk_size] for i in range(0, len(document), chunk_size - overlap)]
     

chunks = create_chunks(pg_essay, chunk_size=250, overlap=30)

for i, chunk in enumerate(chunks):
    print(f"Chunk {i + 1}: {chunk}")
  1. 使用量化后的 Llama 3B 模型生成contextual chunk。

import together, os
from together import Together

# Paste in your Together AI API Key or load it
TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY")
     

# We want to generate a snippet explaining the relevance/importance of the chunk with
# full document in mind.

CONTEXTUAL_RAG_PROMPT = """
Given the document below, we want to explain what the chunk captures in the document.

{WHOLE_DOCUMENT}

Here is the chunk we want to explain:

{CHUNK_CONTENT}

Answer ONLY with a succinct explaination of the meaning of the chunk in the context of the whole document above.
"""
     

from typing import List

# First we will just generate the prompts and examine them

def generate_prompts(document : str, chunks : List[str]) -> List[str]:
  prompts = []
  for chunk in chunks:
    prompt = CONTEXTUAL_RAG_PROMPT.format(WHOLE_DOCUMENT=document, CHUNK_CONTENT=chunk)
    prompts.append(prompt)
  return prompts
     

prompts = generate_prompts(pg_essay, chunks)
     
def generate_context(prompt: str):
    """
    Generates a contextual response based on the given prompt using the specified language model.
    Args:
        prompt (str): The input prompt to generate a response for.
    Returns:
        str: The generated response content from the language model.
    """
    response = client.chat.completions.create(
        model="meta-llama/Llama-3.2-3B-Instruct-Turbo",
        messages=[{"role": "user", "content": prompt}],
        temperature=1
    )
    return response.choices[0].message.content
     
# Let's generate the entire list of contextual chunks

contextual_chunks = [generate_context(prompts[i])+' '+chunks[i] for i in range(len(chunks))]
     

# We should have one contextual chunk for each original chunk
len(contextual_chunks), len(contextual_chunks) == len(chunks)
  1. 向量索引生成
    使用 bge-large-en-v1.5 將上面的上下文chunk片段嵌入到向量索引中。

from typing import List
import together
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

def generate_embeddings(input_texts: List[str], model_api_string: str) -> List[List[float]]:
    """Generate embeddings from Together python library.

    Args:
        input_texts: a list of string input texts.
        model_api_string: str. An API string for a specific embedding model of your choice.

    Returns:
        embeddings_list: a list of embeddings. Each element corresponds to the each input text.
    """
    outputs = client.embeddings.create(
        input=input_texts,
        model=model_api_string,
    )
    return [x.embedding for x in outputs.data]
     

contextual_embeddings = generate_embeddings(contextual_chunks, "BAAI/bge-large-en-v1.5")
     

def vector_retreival(query: str, top_k: int = 5, vector_index: np.ndarray = None) -> List[int]:
    """
    Retrieve the top-k most similar items from an index based on a query.
    Args:
        query (str): The query string to search for.
        top_k (int, optional): The number of top similar items to retrieve. Defaults to 5.
        index (np.ndarray, optional): The index array containing embeddings to search against. Defaults to None.
    Returns:
        List[int]: A list of indices corresponding to the top-k most similar items in the index.
    """

    query_embedding = generate_embeddings([query], 'BAAI/bge-large-en-v1.5')[0]
    similarity_scores = cosine_similarity([query_embedding], vector_index)

    return list(np.argsort(-similarity_scores)[0][:top_k])
     

vector_retreival(query = "What are 'skip-level' meetings?", top_k = 5, vector_index = contextual_embeddings)

至此,有了向量檢索的方法。

  1. 文本檢索索引生成

import bm25s

# Create the BM25 model and index the corpus
retriever = bm25s.BM25(corpus=contextual_chunks)
retriever.index(bm25s.tokenize(contextual_chunks))

# Query the corpus and get top-k results
query = "What are 'skip-level' meetings?"
results, scores = retriever.retrieve(bm25s.tokenize(query), k=5,)
     
for doc in results[0]:
  print(f"Chunk Index {contextual_chunks.index(doc)} : {doc}")

def bm25_retreival(query: str, k : int, bm25_index) -> List[int]:
    """
    Retrieve the top-k document indices based on the BM25 algorithm for a given query.
    Args:
        query (str): The search query string.
        k (int): The number of top documents to retrieve.
        bm25_index: The BM25 index object used for retrieval.
    Returns:
        List[int]: A list of indices of the top-k documents that match the query.
    """

    results, scores = bm25_index.retrieve(bm25s.tokenize(query), k=k)

    return [contextual_chunks.index(doc) for doc in results[0]]
     

bm25_retreival(query = "What are 'skip-level' meetings?", k = 5, bm25_index = retriever)

至此,有了文本(bm25)檢索的方法。

2)查詢階段:

Anthropic提出的Contextual RAG開源實現Open Contextual RAG來了-AI.x社區


  1. 執行向量和 BM25 檢索,然后使用以下實現的 RRF 算法融合排名。

from collections import defaultdict

def reciprocal_rank_fusion(*list_of_list_ranks_system, K=60):
    """
    Fuse rank from multiple IR systems using Reciprocal Rank Fusion.

    Args:
    * list_of_list_ranks_system: Ranked results from different IR system.
    K (int): A constant used in the RRF formula (default is 60).

    Returns:
    Tuple of list of sorted documents by score and sorted documents
    """
    # Dictionary to store RRF mapping
    rrf_map = defaultdict(float)

    # Calculate RRF score for each result in each list
    for rank_list in list_of_list_ranks_system:
        for rank, item in enumerate(rank_list, 1):
            rrf_map[item] += 1 / (rank + K)

    # Sort items based on their RRF scores in descending order
    sorted_items = sorted(rrf_map.items(), key=lambda x: x[1], reverse=True)

    # Return tuple of list of sorted documents by score and sorted documents
    return sorted_items, [item for item, score in sorted_items]

# Example ranked lists from different sources
vector_top_k = vector_retreival(query = "What are 'skip-level' meetings?", top_k = 5, vector_index = contextual_embeddings)
bm25_top_k = bm25_retreival(query = "What are 'skip-level' meetings?", k = 5, bm25_index = retriever)

# Combine the lists using RRF
hybrid_top_k = reciprocal_rank_fusion(vector_top_k, bm25_top_k)

for index in hybrid_top_k[1]:
  print(f"Chunk Index {index} : {contextual_chunks[index]}")
  1. 使用重排序器提高檢索質量
    將從混合搜索輸出的前 6 個文檔傳遞給重排器,根據查詢的相關性進行排序。?

from together import Together

query = "What are 'skip-level' meetings?" # we keep the same query - can change if we want

response = client.rerank.create(
  model="Salesforce/Llama-Rank-V1",
  query=query,
  documents=hybrid_top_k_docs,
  top_n=3 # we only want the top 3 results
)

for result in response.results:
    print(f"Document: {hybrid_top_k_docs[result.index]}")
    print(f"Relevance Score: {result.relevance_score}\n\n")
    
# Document: This chunk refers to "skip-level" meetings, which are a key characteristic of founder mode, where the CEO engages directly with the company beyond their direct reports. This contrasts with the "manager mode" of addressing company issues, where decisions are made perfunctorily via a hierarchical system, to which founders instinctively rebel. that there's a name for it. And once you abandon that constraint there are a huge number of permutations to choose from.For example, Steve Jobs used to run an annual retreat for what he considered the 100 most important people at Apple, and these wer
# Relevance Score: 0.9733742140554578

# Document: This chunk discusses the shift in company management away from the "manager mode" that most companies follow, where CEOs engage with the company only through their direct reports, to "founder mode", where CEOs engage more directly with even higher-level employees and potentially skip over direct reports, potentially leading to "skip-level" meetings. ts of, it's pretty clear that it's going to break the principle that the CEO should engage with the company only via his or her direct reports. "Skip-level" meetings will become the norm instead of a practice so unusual that there's a name for it. An
# Relevance Score: 0.7481956787777269

# Document: This chunk explains that founder mode, a hypothetical approach to running a company by its founders, will differ from manager mode in that founders will engage directly with the company, rather than just their direct reports, through "skip-level" meetings, disregarding the traditional principle that CEOs should only interact with their direct reports, as managers do.  can already guess at some of the ways it will differ.The way managers are taught to run companies seems to be like modular design in the sense that you treat subtrees of the org chart as black boxes. You tell your direct reports what to do, and it's
# Relevance Score: 0.7035533028052896

# Lets add the top 3 documents to a string

retreived_chunks = ''

for result in response.results:
    retreived_chunks += hybrid_top_k_docs[result.index] + '\n\n'

print(retreived_chunks)

# This chunk refers to "skip-level" meetings, which are a key characteristic of founder mode, where the CEO engages directly with the company beyond their direct reports. This contrasts with the "manager mode" of addressing company issues, where decisions are made perfunctorily via a hierarchical system, to which founders instinctively rebel. that there's a name for it. And once you abandon that constraint there are a huge number of permutations to choose from.For example, Steve Jobs used to run an annual retreat for what he considered the 100 most important people at Apple, and these wer

# This chunk discusses the shift in company management away from the "manager mode" that most companies follow, where CEOs engage with the company only through their direct reports, to "founder mode", where CEOs engage more directly with even higher-level employees and potentially skip over direct reports, potentially leading to "skip-level" meetings. ts of, it's pretty clear that it's going to break the principle that the CEO should engage with the company only via his or her direct reports. "Skip-level" meetings will become the norm instead of a practice so unusual that there's a name for it. An

# This chunk explains that founder mode, a hypothetical approach to running a company by its founders, will differ from manager mode in that founders will engage directly with the company, rather than just their direct reports, through "skip-level" meetings, disregarding the traditional principle that CEOs should only interact with their direct reports, as managers do.  can already guess at some of the ways it will differ.The way managers are taught to run companies seems to be like modular design in the sense that you treat subtrees of the org chart as black boxes. You tell your direct reports what to do, and it's
  1. 利用 Llama 405b 進行最終答案生成

將重排后的的 3 個chunks傳遞給LLM以獲得最終答案。

# Generate a story based on the top 10 most similar movies

query = "What are 'skip-level' meetings?"

response = client.chat.completions.create(
    model="meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
    messages=[
      {"role": "system", "content": "You are a helpful chatbot."},
      {"role": "user", "content": f"Answer the question: {query}. Here is relevant information: {retreived_chunks}"},
    ],
)
     

response.choices[0].message.content
     
# '"Skip-level" meetings refer to a management practice where a CEO or high-level executive engages directly with employees who are not their direct reports, bypassing the traditional hierarchical structure of the organization. This approach is characteristic of "founder mode," where the CEO seeks to have a more direct connection with the company beyond their immediate team. In contrast to the traditional "manager mode," where decisions are made through a hierarchical system, skip-level meetings allow for more open communication and collaboration between the CEO and various levels of employees. This approach is often used by founders who want to stay connected to the company\'s operations and culture, and to foster a more flat and collaborative organizational structure.'

小結

通過together團隊的詳細實現,我們清楚的了解到Contextual RAG的具體實現,這使得我們可以無痛的移植到我們的系統中,快速提升RAG性能。

本文轉載自 ??AI工程化??,作者: ully


收藏
回復
舉報
回復
相關推薦
美女精品导航| 97在线播放免费观看| 秋霞综合在线视频| 欧美午夜寂寞影院| h无码动漫在线观看| 天天干视频在线观看| 日韩精品一二区| 久久成人av网站| 国产ts丝袜人妖系列视频| 成人在线观看免费视频| 亚洲综合无码一区二区| 品久久久久久久久久96高清| 国产aⅴ一区二区三区| 亚洲在线一区| 久久视频在线视频| 中文字幕一区二区久久人妻网站| 欧美亚洲人成在线| 欧美日韩国产一区二区| 青春草在线视频免费观看| 午夜视频福利在线观看| 国产在线视频不卡二| 欧美亚州一区二区三区| 青青草原在线免费观看| 欧美少妇性xxxx| 精品一区二区电影| 久久人妻少妇嫩草av蜜桃| 99亚洲伊人久久精品影院| 亚洲成a人v欧美综合天堂下载| 日本一区视频在线观看| 蜜臀av在线观看| 麻豆精品国产91久久久久久| 2019中文字幕在线| 在线观看成人毛片| 亚欧美无遮挡hd高清在线视频| 亚洲欧美国产一区二区三区| 国产国语老龄妇女a片| www.欧美| 777色狠狠一区二区三区| 91视频免费版污| sese综合| 福利精品视频在线| 一女被多男玩喷潮视频| 黄页网站在线| 亚洲一区二区3| 福利在线小视频| 黄在线免费看| 亚洲三级久久久| 中文字幕中文字幕在线中一区高清| 蜜芽tv福利在线视频| 99国产精品国产精品毛片| 国产一区免费视频| 午夜视频福利在线| 久久免费的精品国产v∧| 九九九热999| 青青草视频免费在线观看| aaa亚洲精品| 久久99精品久久久久久久青青日本| 刘玥91精选国产在线观看| 国产91丝袜在线播放| 91精品国产一区二区三区动漫| 国产人妖一区二区| 国产精品亚洲成人| 超碰在线观看97| 欧美一区二区三区激情| 99精品黄色片免费大全| 久久大香伊蕉在人线观看热2| 天堂网av2014| 国产亚洲欧美一级| 亚洲在线观看一区| 色婷婷av在线| 欧美视频在线免费看| 老头吃奶性行交视频| 99热播精品免费| 91精品国产高清一区二区三区| 欧美污在线观看| 成人h动漫免费观看网站| 日韩av一卡二卡| 蜜桃无码一区二区三区| 日韩专区精品| 欧美大片免费观看在线观看网站推荐| 久久综合激情网| 宅男噜噜噜66国产日韩在线观看| 国产a∨精品一区二区三区不卡| 一二三区免费视频| 狠狠狠色丁香婷婷综合久久五月| 91视频国产精品| 四虎精品成人影院观看地址| 国产日韩精品一区二区三区在线| 天堂v在线视频| 大黄网站在线观看| 欧美在线不卡一区| 亚洲av无码成人精品区| 亚洲都市激情| x99av成人免费| 800av免费在线观看| 日本网站在线观看一区二区三区| 91久久综合亚洲鲁鲁五月天| 秋霞网一区二区| 中文无字幕一区二区三区 | 日本一区二区免费视频| 精品一区欧美| 欧美成aaa人片免费看| 亚洲日本视频在线观看| 韩国三级在线一区| 欧美日韩精品综合| 精灵使的剑舞无删减版在线观看| 日韩欧美国产骚| www日本在线观看| 欧美一级淫片| 69av在线视频| 国产后入清纯学生妹| 久久久夜色精品亚洲| 免费看日b视频| 精品乱码一区二区三区四区| 亚洲成人在线网| 黄色录像一级片| 日韩主播视频在线| 国产伦精品一区二区三区视频免费 | a级片在线免费观看| 欧美日韩不卡视频| 五级黄高潮片90分钟视频| 欧美影视一区| 91精品美女在线| 超碰免费97在线观看| 亚洲国产精品一区二区www在线| 亚洲欧美激情网| 午夜精品影视国产一区在线麻豆| 色综合五月天导航| 国产高潮在线观看| 日韩美女视频一区二区| 国产一级特黄a大片免费| 欧美福利在线播放网址导航| 久国内精品在线| 国产免费一区二区三区最新不卡| 中文字幕成人网| 久久婷婷国产91天堂综合精品| 亚洲精品**不卡在线播he| 色综合久久悠悠| www.av日韩| 亚洲免费毛片网站| 北条麻妃亚洲一区| 亚洲最新色图| 91视频国产高清| av在线播放观看| 日韩一区二区在线观看| 日本福利片在线观看| 精品一区二区三区影院在线午夜| 午夜精品电影在线观看| 欧美国产日韩电影| 上原亚衣av一区二区三区| 国产一级精品毛片| 国产精品久久久一区麻豆最新章节| mm1313亚洲国产精品无码试看| 欧美禁忌电影| 国产精品女人久久久久久| 韩国中文字幕2020精品| 欧美午夜不卡视频| 永久免费看片直接| 国产一区在线精品| 成年人深夜视频| 卡通动漫精品一区二区三区| 久久久久久久久久久久久久久久久久av | 制服丝袜中文字幕一区| 唐朝av高清盛宴| 99在线视频精品| 可以免费在线看黄的网站| 日本在线电影一区二区三区| 国产精品欧美日韩久久| 国产黄色在线网站| 精品国产伦一区二区三区免费| 韩国av免费观看| 欧美高清在线一区| 九九九久久久久久久| 亚洲手机视频| 日本精品一区二区三区视频 | 国产3级在线观看| 国产尤物一区二区在线| 亚洲国产精品成人天堂| 久久99视频| 亚洲va久久久噜噜噜| av电影免费在线看| 亚洲人成亚洲人成在线观看| 911美女片黄在线观看游戏| 一区二区三区中文字幕| 性色av蜜臀av色欲av| 久久精品久久精品| 人人妻人人做人人爽| 国产一区二区三区电影在线观看| 国产在线观看91精品一区| gogo高清在线播放免费| 国产亚洲综合久久| 亚洲AV午夜精品| 在线观看网站黄不卡| 欧美日韩激情在线观看| 久久综合久久综合久久综合| wwww.国产| 日韩视频久久| 99精品一区二区三区的区别| 麻豆一区二区| 91久久久久久国产精品| 美女日韩欧美| 欧美精品午夜视频| 国产黄色免费在线观看| 亚洲白拍色综合图区| 日本妇乱大交xxxxx| 亚洲成人www| www日韩在线| 久久午夜色播影院免费高清 | 国产视频一区在线播放| 熟女人妻一区二区三区免费看| 日韩av在线发布| 亚洲 自拍 另类小说综合图区| 欧美高清在线| 久久艳妇乳肉豪妇荡乳av| 国产激情精品一区二区三区| 热久久99这里有精品| 丰满诱人av在线播放| 久久久成人精品视频| 国产高清视频在线| 日韩av在线免费观看| 99久久精品国产色欲| 欧美亚洲丝袜传媒另类| av大全在线观看| 亚洲国产日韩a在线播放性色| 老司机精品免费视频| 国产婷婷精品av在线| 五级黄高潮片90分钟视频| 成人在线综合网| www.桃色.com| 毛片av一区二区三区| 日本三区在线观看| 午夜亚洲激情| 免费成人午夜视频| 亚洲精品美女91| 精品无码国产一区二区三区av| 亚洲影视一区二区三区| 国产又爽又黄ai换脸| 欧美激情偷拍自拍| 在线日韩av永久免费观看| jizzjizz欧美69巨大| 三区精品视频观看| 精品视频亚洲| 亚洲乱码国产乱码精品天美传媒| 国模吧精品视频| 日韩视频专区| 日韩中文欧美| 色撸撸在线观看| 欧美在线资源| 欧美日韩福利在线| 99国产成+人+综合+亚洲欧美| 国产欧美日韩小视频| 雨宫琴音一区二区在线| www.av中文字幕| 米奇777在线欧美播放| 黄色片一级视频| 久久久久国产精品一区三寸| 中文字幕永久视频| 久久国产精品第一页| 国内精品国产三级国产aⅴ久| 国产福利一区二区三区视频| 大桥未久恸哭の女教师| 99riav久久精品riav| 最近中文字幕免费| 中文字幕亚洲电影| 久久免费视频播放| 欧美日韩精品在线播放| 日韩人妻精品中文字幕| 欧美亚州韩日在线看免费版国语版| 欧美性受xxx黑人xyx性爽| 3d成人h动漫网站入口| 丰满熟女一区二区三区| 日韩精品视频免费专区在线播放 | 国产三级午夜理伦三级| 日韩欧美一级片| 日韩av高清在线| 最近2019中文字幕一页二页| av网站在线看| 欧美一级大片视频| 色诱色偷偷久久综合| 官网99热精品| 国产亚洲欧美日韩在线观看一区二区 | 色婷婷久久久亚洲一区二区三区| 欧美成人一区二区视频| 日韩精品一区二区三区蜜臀| 神马午夜一区二区| 中文字幕精品国产| 国产盗摄在线视频网站| 国产成人精品电影| 在线视频亚洲欧美中文| 欧美不卡福利| 午夜精品亚洲| 99草草国产熟女视频在线| 国内精品久久久久影院一蜜桃| 成年人的黄色片| 国产精品久久久久一区| 日本一区二区免费在线观看| 欧美亚洲综合在线| 少妇精品高潮欲妇又嫩中文字幕| 在线观看精品国产视频| 第一av在线| 成人写真福利网| 国产成人1区| 97超碰在线人人| 国产一区在线观看视频| 中文字幕成人动漫| 亚洲成人资源在线| 国产精品无码在线播放| 亚洲欧美中文另类| 18aaaa精品欧美大片h| 91在线网站视频| 国产精品密蕾丝视频下载 | 国产精品vvv| 亚洲一区二区久久久久久 | 成人一区二区av| 美洲天堂一区二卡三卡四卡视频| 日韩精品视频一区二区| 亚洲精品中文在线影院| 亚洲熟妇无码久久精品| 亚洲欧美激情一区| av在线理伦电影| 97碰碰视频| 五月激情久久久| 日本久久久久久久久久久久| 91美女福利视频| 天天操天天射天天爽| 精品少妇一区二区三区视频免付费| eeuss影院在线观看| 欧美中文在线免费| 欧美偷窥清纯综合图区| 国产美女在线一区| 成人一区二区视频| 国产一级性生活| 精品久久国产老人久久综合| a视频在线观看| 亚洲xxxxx性| 久久久久电影| 五月六月丁香婷婷| 亚洲视频1区2区| 国产精品视频在线观看免费| 中文字幕久久精品| julia一区二区三区中文字幕| 日韩福利在线| 日韩精品欧美成人高清一区二区| 手机免费看av| 欧美天堂亚洲电影院在线播放| 国产在线日本| 国产精品网站视频| 欧美大黑bbbbbbbbb在线| 午夜精品中文字幕| 亚洲欧洲日韩综合一区二区| 91精品国产色综合久久不8| 日韩专区在线播放| 久久天堂久久| 91成人综合网| 91蝌蚪国产九色| 日本中文字幕在线观看视频| 国产亚洲视频在线| 电影91久久久| 粉嫩av一区二区三区天美传媒| 国产成人日日夜夜| 日韩欧美亚洲视频| 亚洲精品一区二区在线| 日韩制服一区| 国产激情片在线观看| av高清久久久| 加勒比在线一区| 久久久国产影院| 第四色在线一区二区| 欧美视频免费播放| 国产精品美女久久久久久久| 国产精品乱码久久久| 久久久久久亚洲精品不卡| 青草久久视频| 天天色综合天天色| 一区二区三区不卡在线观看| 天堂在线观看视频| 国产精品一二三在线| 午夜精品国产| 在线观看国产精品一区| 91精品国产综合久久精品app| 青春草免费在线视频| 欧美lavv| 国产精品一区二区久久精品爱涩| 中文字幕在线字幕中文| 最新中文字幕亚洲| 国产欧美一区二区三区米奇| 国产精品wwwww| 一区二区三区精品| 好男人免费精品视频| 成人在线资源网址| 视频一区二区三区中文字幕| 日本黄色小说视频| 亚洲性生活视频| 视频精品二区| 久久久久久久久久久久91| 亚洲午夜电影在线| 麻豆网站在线免费观看| 久久香蕉综合色| 国产精品亚洲专一区二区三区| 天天干天天操天天操|