精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

如何優化大型語言模型(LLM)的分塊策略 原創

發布于 2024-12-23 07:59
瀏覽
0收藏

?本文探討了LLM分塊的不同方法,包括固定大小分塊、遞歸分塊、語義分塊和代理分塊,每種方法都各有獨特的優勢。

大型語言模型(LLM)通過其生成類似人類水平的文本、解答復雜問題的能力以及對大量信息進行分析所展現出的驚人準確性,已經改變了自然語言處理(NLP)領域。從客戶服務到醫學研究,LLM在處理各種查詢并生成詳細回復的能力使它們在許多領域都具有不可估量的價值。然而,隨著LLM的規模擴大以處理不斷增長的數據,它們在管理長文檔和高效檢索最相關信息方面面臨著挑戰。

盡管LLM擅長處理和生成類似人類的文本,但它們的“場景窗口”相對有限。這意味著它們一次只能在內存中保留有限的信息,這使得管理非常長的文檔面臨重重困難。此外,LLM還難以從大型數據集中快速找到最相關的信息。更重要的是,LLM是在固定數據集上訓練的,因此隨著新信息的不斷涌現,它們可能會逐漸過時。為了保持準確性和實用性,需要定期更新數據。

如何優化大型語言模型(LLM)的分塊策略-AI.x社區

檢索增強生成(RAG)解決了這些挑戰。在RAG工作流中有許多組件,例如查詢、嵌入、索引等等。以下對LLM分塊策略進行探討。

通過將文檔分成更小的、有意義的部分,并將它們嵌入到向量數據庫中,RAG系統可以搜索和檢索每個查詢最相關的塊。這種方法使LLM能夠專注于特定的信息,從而提高響應的準確性和效率。

本文將更深入地探討LLM不同的分塊方法及其策略,以及它們在為現實世界的應用程序優化LLM中的作用。?

什么是分塊?

?分塊是將大數據源拆分成更小的、可管理的部分或“塊”。這些塊存儲在向量數據庫中,允許基于相似性的快速有效搜索。當用戶提交查詢時,向量數據庫會找到最相關的塊,并將它們發送給LLM。這樣,這些模型可以只關注最相關的信息,使其響應更快、更準確。

分塊可以幫助語言模型更順利地處理大型數據集,并通過縮小需要查看的數據范圍來提供精確的答案。

如何優化大型語言模型(LLM)的分塊策略-AI.x社區

對于需要快速、精確答案的應用程序(例如客戶支持或法律文檔搜索),分塊是提高性能和可靠性的基本策略。

以下是一些在RAG中使用的主要分塊策略:

  • 固定大小分塊
  • 遞歸分塊
  • 語義分塊
  • 代理分塊

現在深入探討各種分塊策略的細節。?

1.固定大小分塊

固定大小分塊涉及將數據分成大小相同的部分,從而更容易處理大型文檔。

有時,開發人員會在各個塊之間添加少許重疊部分,也就是讓一個段落的小部分內容在下一個段落的開頭重復出現。這種重疊的方法有助于模型在每個塊的邊界上保留場景,確保關鍵信息不會在邊緣丟失。這種策略對于需要連續信息流的任務特別有用,因為它使模型能夠更準確地解釋文本,并理解段落之間的關系,從而產生更連貫和場景感知的響應。

如何優化大型語言模型(LLM)的分塊策略-AI.x社區

上圖是固定大小分塊的完美示例,其中每個塊都由一種獨特的顏色表示。綠色部分表示塊之間的重疊部分,確保模型在處理下一個分塊時能夠訪問前一個分塊的相關場景信息。

這種重疊策略提高了模型處理和理解全文的能力,從而在摘要或翻譯等任務中獲得更好的性能,在這些任務中,維護跨塊邊界的信息流至關重要。?

代碼示例

現在使用一個代碼示例重新創建這個示例。將使用??LangChain??來實現固定大小分塊。

Python 
1 from langchain.text_splitter import RecursiveCharacterTextSplitter
2
3 # Function to split text with fixed-size chunks and overlap
4 def split_text_with_overlap(text, chunk_size, overlap_size):
5    # Create a text splitter with overlap
6    text_splitter = RecursiveCharacterTextSplitter(
7        chunk_size=chunk_size, 
8        chunk_overlap=overlap_size
9    )
10    
11    # Split the text
12    chunks = text_splitter.split_text(text)
13   
14    return chunks
15
16 # Example text
17 text = """Artificial Intelligence (AI) simulates human intelligence in machines for tasks like visual perception, speech recognition, and language translation. It has evolved from rule-based systems to data-driven models, enhancing performance through machine learning and deep learning."""
18
19 # Define chunk size and overlap size
20 chunk_size = 80  # 80 characters per chunk
21 overlap_size = 10  # 10 characters overlap between chunks
22
23 # Get the chunks with overlap
24 chunks = split_text_with_overlap(text, chunk_size, overlap_size)
25
26 # Print the chunks and overlaps
27 for i in range(len(chunks)):
28    print(f"Chunk {i+1}:")
29    print(chunks[i])  # Print the chunk itself
30    
31    # If there's a next chunk, print the overlap between current and next chunk
32    if i < len(chunks) - 1:
33        overlap = chunks[i][-overlap_size:]  # Get the overlap part
34        print(f"Overlap with Chunk {i+2}:")
35        print(overlap)
36    
37    print("\n" + "="*50 + "\n")
執行上述代碼后,它將生成以下輸出:
HTML 
1 Chunk 1:
2 Artificial Intelligence (AI) simulates human intelligence in machines for tasks
3 Overlap with Chunk 2:
4 for tasks
5
6 ==================================================
7
8 Chunk 2:
9 for tasks like visual perception, speech recognition, and language translation.
10 Overlap with Chunk 3:
11 anslation.
12
13 ==================================================
14
15 Chunk 3:
16 It has evolved from rule-based systems to data-driven models, enhancing
17 Overlap with Chunk 4:
18  enhancing
19
20 ==================================================
21
22 Chunk 4:
23 enhancing performance through machine learning and deep learning.

2.遞歸分塊

?遞歸分塊是一種高效的方法,它通過將文本反復拆分為更小的子塊,從而系統地將龐大的文本內容拆分為更易于管理的部分。這種方法在處理復雜或具有層次結構的文檔時特別有效,能夠確保每個拆分后的部分都保持一致性且場景完整。該過程會持續進行,直至文本被拆分成適合模型進行有效處理的大小。

以需要由具有有限場景窗口的語言模型處理的一個冗長文檔為例,遞歸分塊方法會首先將該文檔拆分為幾個主要部分。若這些部分仍然過于龐大,該方法會進一步將其細分為更小的子部分,并持續這一過程,直至每個塊都符合模型的處理能力。這種層次分明的拆分方式不僅保留了原始文檔的邏輯流程和場景,而且使LLM能夠更有效地處理長文本。

在實際應用中,遞歸分塊可以根據文檔的結構和任務的特定需求采用多種策略來實現,根據標題、段落或句子進行拆分。

如何優化大型語言模型(LLM)的分塊策略-AI.x社區

在上圖中,文本通過遞歸分塊被拆分為四個不同顏色的塊,每個塊都代表了一個更小、更易管理的部分,并且每個塊包含最多80個單詞。這些塊之間沒有重疊。顏色編碼有助于展示內容是如何被分割成邏輯部分,使模型更容易處理和理解長文本,避免了重要場景的丟失。

代碼示例?

現在編寫一個示例,演示如何實現遞歸分塊。

Python 
1 from langchain.text_splitter import RecursiveCharacterTextSplitter
2
3 # Function to split text into chunks using recursive chunking
4 def split_text_recursive(text, chunk_size=80):
5    # Initialize the RecursiveCharacterTextSplitter
6    text_splitter = RecursiveCharacterTextSplitter(
7        chunk_size=chunk_size,  # Maximum size of each chunk (80 words)
8        chunk_overlap=0         # No overlap between chunks
9    )
10    
11    # Split the text into chunks
12    chunks = text_splitter.split_text(text)
13    
14    return chunks
15
16 # Example text
17 text = """Artificial Intelligence (AI) simulates human intelligence in machines for tasks like visual perception, speech recognition, and language translation. It has evolved from rule-based systems to data-driven models, enhancing performance through machine learning and deep learning."""
18
19 # Split the text using recursive chunking
20 chunks = split_text_recursive(text, chunk_size=80)
21
22 # Print the resulting chunks
23 for i, chunk in enumerate(chunks):
24    print(f"Chunk {i+1}:")
25    print(chunk)
26    print("="*50)

上述代碼將生成以下輸出:

HTML 
1 Chunk 1:
2 Artificial Intelligence (AI) simulates human intelligence in machines for tasks
3 ==================================================
4 Chunk 2:
5 like visual perception, speech recognition, and language translation. It has
6 ==================================================
7 Chunk 3:
8 evolved from rule-based systems to data-driven models, enhancing performance
9 ==================================================
10 Chunk 4:
11 through machine learning and deep learning.

在理解了這兩種基于長度的分塊策略之后,是理解一種更關注文本含義/場景的分塊策略的時候了。

3.語義分塊

?語義分塊是指根據內容的含義或場景將文本拆分成塊。這種方法通常使用機器學習或自然語言處理(NLP)技術,例如句子嵌入,來識別文本中具有相似含義或語義結構的部分。

如何優化大型語言模型(LLM)的分塊策略-AI.x社區

在上圖中,每個塊都采用不同的顏色表示——藍色代表人工智能,黃色代表提示工程。這些塊是分隔開的,因為它們涵蓋了不同的想法。這種方法可以確保模型對每個主題都能有清晰且準確的理解,避免了不同主題間的混淆與干擾。?

代碼示例

現在編寫一個實現語義分塊的示例。

Python 
1 import os
2 from langchain_experimental.text_splitter import SemanticChunker
3 from langchain_openai.embeddings import OpenAIEmbeddings
4
5 # Set the OpenAI API key as an environment variable (Replace with your actual API key)
6 os.environ["OPENAI_API_KEY"] = "replace with your actual OpenAI API key" 
7
8 # Function to split text into semantic chunks
9 def split_text_semantically(text, breakpoint_type="percentile"):
10    # Initialize the SemanticChunker with OpenAI embeddings
11    text_splitter = SemanticChunker(OpenAIEmbeddings(), breakpoint_threshold_type=breakpoint_type)
12    
13    # Create documents (chunks)
14    docs = text_splitter.create_documents([text])
15    
16    # Return the list of chunks
17    return [doc.page_content for doc in docs]
18
19 def main():
20    # Example content (State of the Union address or your own text)
21    document_content = """
22 Artificial Intelligence (AI) simulates human intelligence in machines for tasks like visual perception, speech recognition, and language translation. It has evolved from rule-based systems to data-driven models, enhancing performance through machine learning and deep learning.
23
24 Prompt Engineering involves designing input prompts to guide AI models in producing accurate and relevant responses, improving tasks such as text generation and summarization.
25    """
26    
27    # Split text using the chosen threshold type (percentile)
28    threshold_type = "percentile"
29    print(f"\nChunks using {threshold_type} threshold:")
30    chunks = split_text_semantically(document_content, breakpoint_type=threshold_type)
31    
32    # Print each chunk's content
33    for idx, chunk in enumerate(chunks):
34        print(f"Chunk {idx + 1}:\n{chunk}\n")
35        
36 if __name__ == "__main__":
37    main()

上述代碼將生成以下輸出:

HTML 
1 Chunks using percentile threshold:
2 Chunk 1:
3 Artificial Intelligence (AI) simulates human intelligence in machines for tasks like visual perception, speech recognition, and language translation. It has evolved from rule-based systems to data-driven models, enhancing performance through machine learning and deep learning.
4
5 Chunk 2:
6 Prompt Engineering involves designing input prompts to guide AI models in producing accurate and relevant responses, improving tasks such as text generation and summarization.

4.代理分塊

在這些策略中,代理分塊是一種強大的策略。這個策略利用像GPT這樣的LLM作為分塊過程中的代理。LLM不再依賴于人工設定的規則來確定內容的拆分方式,而是憑借其強大的理解能力,主動地對輸入信息進行組織或劃分。LLM會依據任務的具體場景,自主決定如何將內容拆分成易于管理的部分,從而找到最佳的拆分方案。

如何優化大型語言模型(LLM)的分塊策略-AI.x社區

上圖顯示了一個分塊代理將一個龐大的文本拆分成更小的、有意義的部分。這個代理是由人工智能驅動的,這有助于它更好地理解文本,并將其分成有意義的塊。這被稱為“代理分塊”,與簡單地將文本拆分為相等的部分相比,這是一種更智能的處理文本的方式。

接下來探討如何在代碼示例中實現。?

Python 
1 from langchain.chat_models import ChatOpenAI
2 from langchain.prompts import PromptTemplate
3 from langchain.chains import LLMChain
4 from langchain.agents import initialize_agent, Tool, AgentType
5
6 # Initialize OpenAI chat model (replace with your API key)
7 llm = ChatOpenAI(model="gpt-3.5-turbo", api_key="replace with your actual OpenAI API key")
8
?9 # Step 1: Define Chunking and Summarization Prompt Template
10 chunk_prompt_template = """
11 You are given a large piece of text. Your job is to break it into smaller parts (chunks) if necessary and summarize each chunk.
12 Once all parts are summarized, combine them into a final summary. 
13 If the text is already small enough to process at once, provide a full summary in one step. 
14 Please summarize the following text:\n{input}
15 """
16 chunk_prompt = PromptTemplate(input_variables=["input"], template=chunk_prompt_template)
17
18 # Step 2: Define Chunk Processing Tool
19 def chunk_processing_tool(query):
20    """Processes text chunks and generates summaries using the defined prompt."""
21    chunk_chain = LLMChain(llm=llm, prompt=chunk_prompt)
22    print(f"Processing chunk:\n{query}\n")  # Show the chunk being processed
23    return chunk_chain.run(input=query)
24
25 # Step 3: Define External Tool (Optional, can be used to fetch extra information if needed)
26 def external_tool(query):
27    """Simulates an external tool that could fetch additional information."""
28    return f"External response based on the query: {query}"
29
30 # Step 4: Initialize the agent with tools
31 tools = [
32    Tool(
33        name="Chunk Processing",
34        func=chunk_processing_tool,
35        description="Processes text chunks and generates summaries."
36    ),
37    Tool(
38        name="External Query",
39        func=external_tool,
40        description="Fetches additional data to enhance chunk processing."
41    )
42 ]
43
44 # Initialize the agent with defined tools and zero-shot capabilities
45 agent = initialize_agent(
46    tools=tools,
47    agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
48    llm=llm,
49    verbose=True
50 )
51
52 # Step 5: Agentic Chunk Processing Function
53 def agent_process_chunks(text):
54    """Uses the agent to process text chunks and generate a final output."""
55    # Step 1: Chunking the text into smaller, manageable sections
56    def chunk_text(text, chunk_size=500):
57        """Splits large text into smaller chunks."""
58        return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
59
60    chunks = chunk_text(text)
61
62    # Step 2: Process each chunk with the agent
63    chunk_results = []
64    for idx, chunk in enumerate(chunks):
65        print(f"Processing chunk {idx + 1}/{len(chunks)}...")
66        response = agent.invoke({"input": chunk})  # Process chunk using the agent
67        chunk_results.append(response['output'])  # Collect the chunk result
68
69    # Step 3: Combine the chunk results into a final output
70    final_output = "\n".join(chunk_results)
71    return final_output
72
73 # Step 6: Running the agent on an example large text input
74 if __name__ == "__main__":
75    # Example large text content
76    text_to_process = """
77    Artificial intelligence (AI) is transforming industries by enabling machines to perform tasks that
78    previously required human intelligence. From healthcare to finance, AI is driving innovation and improving
79    efficiency. For instance, in healthcare, AI algorithms assist doctors in diagnosing diseases, interpreting
80    medical images, and predicting patient outcomes. Meanwhile, in finance, AI helps detect fraud, manage
81    investments, and automate customer service.
82
83    However, the widespread adoption of AI also raises ethical concerns. Issues like privacy invasion,
84    algorithmic bias, and the potential loss of jobs due to automation are significant challenges. Experts
85    argue that it's essential to develop AI responsibly to ensure that it benefits society as a whole.
86    Proper regulations, transparency, and accountability can help address these issues, ensuring that AI
87    technologies are used for the greater good.
88
89    Beyond individual industries, AI is also impacting the global economy. Nations are investing heavily
90    in AI research and development to maintain a competitive edge. This technological race could redefine
91    global power dynamics, with countries that excel in AI leading the way in economic and military strength.
92    Despite the potential for AI to contribute positively to society, its development and application require
93    careful consideration of ethical, legal, and societal implications.
94    """
95
96    # Process the text and print the final result
97    final_result = agent_process_chunks(text_to_process)
98    print("\nFinal Output:\n", final_result)

上述代碼將生成以下輸出:

HTML 
1 Processing chunk 1/3...
2
3
4 > Entering new AgentExecutor chain...
5 I should use Chunk Processing to extract the key information from the text provided.
6 Action: Chunk Processing
7 Action Input: Artificial intelligence (AI) is transforming industries by enabling machines to perform tasks that previously required human intelligence. From healthcare to finance, AI is driving innovation and improving efficiency. For instance, in healthcare, AI algorithms assist doctors in diagnosing diseases, interpreting medical images, and predicting patient outcomes. Meanwhile, in finance, AI helps detect fraud, manage investments, and automate customer service.Processing chunk:
8 Artificial intelligence (AI) is transforming industries by enabling machines to perform tasks that previously required human intelligence. From healthcare to finance, AI is driving innovation and improving efficiency. For instance, in healthcare, AI algorithms assist doctors in diagnosing diseases, interpreting medical images, and predicting patient outcomes. Meanwhile, in finance, AI helps detect fraud, manage investments, and automate customer service.
9
10 Observation: Artificial intelligence (AI) is revolutionizing various industries by allowing machines to complete tasks that once needed human intelligence. In healthcare, AI algorithms aid doctors in diagnosing illnesses, analyzing medical images, and forecasting patient results. In finance, AI is used to identify fraud, oversee investments, and streamline customer service. AI is playing a vital role in enhancing efficiency and driving innovation across different sectors.
11 Thought:I need more specific information about the impact of AI in different industries.
12 Action: External Query
13 Action Input: Impact of artificial intelligence in healthcare
14 Observation: External response based on the query: Impact of artificial intelligence in healthcare
15 Thought:I should now look for information on the impact of AI in finance.
16 Action: External Query
17 Action Input: Impact of artificial intelligence in finance
18 Observation: External response based on the query: Impact of artificial intelligence in finance
19 Thought:I now have a better understanding of how AI is impacting healthcare and finance.
20 Final Answer: Artificial intelligence is revolutionizing industries like healthcare and finance by enhancing efficiency, driving innovation, and enabling machines to perform tasks that previously required human intelligence. In healthcare, AI aids in diagnosing diseases, interpreting medical images, and predicting patient outcomes, while in finance, it helps detect fraud, manage investments, and automate customer service.
21
22 > Finished chain.
23 Processing chunk 2/3...
24
25 > Entering new AgentExecutor chain...
26 This question is discussing ethical concerns related to the widespread adoption of AI and the need to develop AI responsibly.
27 Action: Chunk Processing
28 Action Input: The text providedProcessing chunk:
29 The text provided
30
31 Observation: I'm sorry, but you haven't provided any text to be summarized. Could you please provide the text so I can assist you with summarizing it?
32 Thought:I need to provide the text for chunk processing to summarize.
33 Action: External Query
34 Action Input: Retrieve the text related to the ethical concerns of AI adoption and responsible development
35 Observation: External response based on the query: Retrieve the text related to the ethical concerns of AI adoption and responsible development
36 Thought:Now that I have the text related to ethical concerns of AI adoption and responsible development, I can move forward with chunk processing.
37 Action: Chunk Processing
38 Action Input: The retrieved textProcessing chunk:
39 The retrieved text
40
41 Observation: I'm sorry, but it seems like you have not provided any text for me to summarize. Could you please provide the text you would like me to summarize? Thank you!
42 Thought:I need to ensure that the text related to ethical concerns of AI adoption and responsible development is provided for chunk processing to generate a summary.
43 Action: External Query
44 Action Input: Retrieve the text related to the ethical concerns of AI adoption and responsible development
45 Observation: External response based on the query: Retrieve the text related to the ethical concerns of AI adoption and responsible development
46 Thought:Now that I have the text related to ethical concerns of AI adoption and responsible development, I can proceed with chunk processing to generate a summary.
47 Action: Chunk Processing
48 Action Input: The retrieved textProcessing chunk:
49 The retrieved text
50
51 Observation: I'm sorry, but you haven't provided any text to be summarized. Can you please provide the text so I can help you with the summarization?
52 Thought:I need to make sure that the text related to ethical concerns of AI adoption and responsible development is entered for chunk processing to summarize.
53 Action: Chunk Processing
54 Action Input: Text related to ethical concerns of AI adoption and responsible developmentProcessing chunk:
55 Text related to ethical concerns of AI adoption and responsible development
56
57 Observation: The text discusses the ethical concerns surrounding the adoption of artificial intelligence (AI) and the importance of responsible development. It highlights issues such as bias in AI algorithms, privacy violations, and the potential for autonomous AI systems to make harmful decisions. The text emphasizes the need for transparency, accountability, and ethical guidelines to ensure that AI technologies are developed and deployed in a responsible manner.
58 Thought:The text provides information on ethical concerns related to AI adoption and responsible development, emphasizing the need for regulation, transparency, and accountability. 
59 Final Answer: The text discusses the ethical concerns surrounding the adoption of artificial intelligence (AI) and the importance of responsible development.
60
61 > Finished chain.
62 Processing chunk 3/3...
63
64 > Entering new AgentExecutor chain...
65 This question seems to be about the impact of AI on the global economy and the potential implications.
66 Action: Chunk Processing
67 Action Input: The text providedProcessing chunk:
68 The text provided
69
70 Observation: I'm sorry, but you did not provide any text for me to summarize. Please provide the text that you would like me to summarize.
71 Thought:I need to provide the text for Chunk Processing to summarize.
72 Action: External Query
73 Action Input: Fetch the text about the impact of AI on the global economy and its implications.
74 Observation: External response based on the query: Fetch the text about the impact of AI on the global economy and its implications.
75 Thought:Now that I have the text about the impact of AI on the global economy and its implications, I can proceed with Chunk Processing.
76 Action: Chunk Processing
77 Action Input: The text about the impact of AI on the global economy and its implications.Processing chunk:
78 The text about the impact of AI on the global economy and its implications.
79
80 Observation: The text discusses the significant impact that artificial intelligence (AI) is having on the global economy. It highlights how AI is revolutionizing industries by increasing productivity, reducing costs, and creating new job opportunities. However, there are concerns about job displacement and the need for retraining workers to adapt to the changing landscape. Overall, AI is reshaping the economy and prompting a shift in the way businesses operate.
81 Thought:Based on the summary generated by Chunk Processing, the impact of AI on the global economy seems to be significant, with both positive and negative implications.
82 Final Answer: The impact of AI on the global economy is significant, revolutionizing industries, increasing productivity, reducing costs, creating new job opportunities, but also raising concerns about job displacement and the need for worker retraining.
83
84 > Finished chain.
85
86 Final Output:
87  Artificial intelligence is revolutionizing industries like healthcare and finance by enhancing efficiency, driving innovation, and enabling machines to perform tasks that previously required human intelligence. In healthcare, AI aids in diagnosing diseases, interpreting medical images, and predicting patient outcomes, while in finance, it helps detect fraud, manage investments, and automate customer service.
88 The text discusses the ethical concerns surrounding the adoption of artificial intelligence (AI) and the importance of responsible development.
89 The impact of AI on the global economy is significant, revolutionizing industries, increasing productivity, reducing costs, creating new job opportunities, but also raising concerns about job displacement and the need for worker retraining.

分塊策略的比較

為了更容易理解不同的分塊方法,下表比較了固定大小分塊、遞歸分塊、語義分塊和代理分塊的工作原理、何時使用它們以及它們的局限性。



分塊類型



描述




方法





適用場景





局限性

固定大小

分塊

將文本分成大小相等的塊,而不考慮內容。

基于固定的單詞或字符限制創建的塊。

簡單、結構化的文本,場景連續性并不重要。

可能會丟失場景或拆分句子/想法。

遞歸分塊

不斷地將文本分成更小的塊,直到達到可管理的大小。

分層拆分,如果太大,將部分進一步拆分。

冗長、復雜或分層的文檔(例如技術手冊)。

如果部分過于寬泛,仍可能會丟失場景。

語義分塊

根據意義或相關主題將文本分成塊。

使用句子嵌入等NLP技術對相關內容進行拆分。

場景敏感的任務,連貫性和主題連續性至關重要。

需要NLP技術;實施起來更復雜。

代理分塊

利用人工智能模型(如GPT)將內容自主拆分為有意義的部分。

基于模型的理解和特定任務的場景采用人工智能驅動的拆分。

在內容結構多變的復雜任務中,人工智能可以優化分塊。

可能具有不可預測性,并需要進行調整。

結論

分塊策略與檢索增強生成(RAG)對于提升LLM性能至關重要。分塊策略有助于將復雜數據簡化為更小、更易管理的部分,從而促進更高效的處理;而RAG通過在生成工作流中融入實時數據檢索來改進LLM。總的來說,這些方法通過將有組織的數據與生動、實時的信息相結合,使LLM能夠提供更精確、更貼合場景的回復。

原文標題:??Chunking Strategies for Optimizing Large Language Models (LLMs)??作者:Usama Jamil

?著作權歸作者所有,如需轉載,請注明出處,否則將追究法律責任
收藏
回復
舉報
回復
相關推薦
亚洲国产精品日韩专区av有中文| 天天综合网天天| 成人午夜视频免费看| 欧美大片在线看| 国产中文字幕一区二区| 午夜日韩成人影院| |精品福利一区二区三区| 91精品入口蜜桃| 九九精品免费视频| 99久久久国产精品美女| 日韩精品在线一区二区| 久久综合久久色| 最新国产在线拍揄自揄视频| 91视频你懂的| 亚洲最大的av网站| 韩国av中文字幕| 中文精品久久| 一区二区三区回区在观看免费视频| 91高清国产视频| 国产色播av在线| 成人欧美一区二区三区1314| 狠狠色综合色区| 国产又大又黄又爽| 久久综合五月| 高清欧美性猛交xxxx黑人猛交| 99在线视频免费| 蜜桃一区av| 欧美一区二区三区在线看| 国产精品wwwww| 精精国产xxxx视频在线中文版| 国产肉丝袜一区二区| 国产精品乱码视频| 国产男女无套免费网站| 日韩精品色哟哟| 91禁外国网站| 亚洲一级二级片| 国内成人自拍| 日韩精品免费一线在线观看| 日本少妇xxxx软件| 成人动漫视频在线观看| 欧美在线制服丝袜| 欧美国产日韩在线播放| 日本а中文在线天堂| 亚洲一区二区3| 国产一级片91| av毛片在线播放| 亚洲人成网站色在线观看| 亚洲精品欧美精品| 电影在线一区| 欧美国产综合色视频| 日本一区高清在线视频| 欧美日本韩国一区二区| 91美女在线观看| 蜜桃91精品入口| 欧美男男激情freegay| www.亚洲精品| 精品视频在线观看| 三级理论午夜在线观看| 91免费精品国自产拍在线不卡| 国产伦视频一区二区三区| 精品人妻无码一区二区色欲产成人| 久久99国产精品免费| 成人夜晚看av| 99精品人妻无码专区在线视频区| 国产一区二区三区在线看麻豆| 成人免费福利在线| 国产又黄又粗又猛又爽| 国产一级精品在线| 国产精品对白一区二区三区| 亚洲产国偷v产偷v自拍涩爱| 国产成人精品影视| 国产精品久久国产三级国电话系列| www.五月天激情| 成人国产在线观看| 欧美精品久久| 99免在线观看免费视频高清| 国产精品传媒入口麻豆| 丰满女人性猛交| 福利写真视频网站在线| 精品国产鲁一鲁一区二区张丽| 精品少妇一区二区三区在线| 日本成人三级电影| 欧美日韩在线观看一区二区| 中文字幕一区二区三区四| 136导航精品福利| 亚洲精品自产拍| 国产又粗又长又硬| 国产精品黄色| 日韩美女免费视频| 国产精品久久久久久久久久久久久久久久久久 | 91官网在线观看| 爱豆国产剧免费观看大全剧苏畅 | 亚洲午夜精品久久| 日本在线视频www鲁啊鲁| 性久久久久久久| 日本久久久久久久久久久久| 久久wwww| 国产亚洲精品高潮| 91视频综合网| 六月婷婷一区| 亚洲影院色无极综合| 天堂在线观看av| 国产精品久线在线观看| 91免费黄视频| 免费成人黄色网| 日韩高清a**址| 放荡的美妇在线播放| 欧美日韩国产欧| 国产精品久久久久久av福利软件 | www.亚洲免费视频| 日韩大片免费在线观看| 青草国产精品久久久久久| wwwxx欧美| 最新真实国产在线视频| 午夜亚洲福利老司机| 手机av在线免费| 亚洲丝袜美腿一区| 色综合五月天导航| 中文字幕+乱码+中文乱码91| av亚洲精华国产精华| 2021狠狠干| 素人一区二区三区| 日韩国产一区三区| 青娱乐国产盛宴| 精品一区二区日韩| 欧美资源一区| 卡通欧美亚洲| 日韩国产一区三区| 国产在线欧美在线| 国产综合色视频| 亚洲一区二区在线看| 成人免费短视频| 日韩二区三区在线| 免费日韩一级片| 成人午夜电影小说| 成人在线观看毛片| 四虎在线精品| 久久精品视频一| 国产又色又爽又黄又免费| 国产精品丝袜久久久久久app| 春日野结衣av| 亚洲小说图片| 日本不卡免费高清视频| 日本视频在线观看一区二区三区| 亚洲一卡二卡三卡四卡无卡久久 | 一级黄色片在线播放| 中文字幕免费观看一区| 北条麻妃av高潮尖叫在线观看| 亚洲调教一区| 国产成人高清激情视频在线观看| 四虎在线免费观看| 精品欧美国产一区二区三区| 亚洲精品在线视频免费观看| 在线综合视频| 欧美精品一区二区三区四区五区 | 51久久夜色精品国产麻豆| 精品一区二区6| 久久国产福利国产秒拍| 五月天综合婷婷| 2021年精品国产福利在线| 欧美黑人xxxx| 天堂中文在线资源| 欧美性生交大片免费| 久久亚洲AV成人无码国产野外| 久久精品123| 日韩经典在线视频| 欧美亚洲人成在线| 欧美老女人性生活| 少妇高潮一区二区三区99小说| 疯狂做受xxxx欧美肥白少妇| 国产一二三四五区| 精品无人区卡一卡二卡三乱码免费卡| 在线观看视频黄色| 成人免费在线电影网| 亚洲**2019国产| 国产精品99999| 91精品福利在线一区二区三区 | 欧美18hd| 精品国产99国产精品| 亚洲熟女综合色一区二区三区| 亚洲国产精品传媒在线观看| 污视频在线观看免费网站| 激情综合视频| 欧美日韩一区二区三区在线观看免 | 阿v免费在线观看| 欧美一级欧美一级在线播放| 好吊操这里只有精品| 国产人成亚洲第一网站在线播放| 蜜桃福利午夜精品一区| 99国内精品| 国产又大又长又粗又黄| 国产厕拍一区| 国产精品老女人视频| 亚洲综合影视| 国产午夜精品视频| 不卡视频免费在线观看| 日本久久精品电影| 麻豆视频在线观看| 国产日韩欧美不卡| 69xxx免费视频| 美女一区二区久久| 欧美综合在线播放| 永久91嫩草亚洲精品人人| 欧美 日韩 国产在线| 精品一区二区三区亚洲| 国产精品jizz在线观看麻豆| 中文在线字幕免费观看| 在线观看精品国产视频| 欧美一级淫片免费视频魅影视频| 欧美三级日韩三级| 日韩免费视频一区二区视频在线观看| 国产精品美女久久久久久久网站| 少妇精品无码一区二区三区| 精品在线播放免费| 虎白女粉嫩尤物福利视频| 中文字幕一区二区三区乱码图片 | 伊人久久婷婷| 曰韩不卡视频| 欧洲杯什么时候开赛| 国产午夜精品在线| 欧美在线在线| 国产色视频一区| 欧美美女日韩| 91禁外国网站| 黄色视屏在线免费观看| 欧美成人免费小视频| 91网在线播放| 亚洲人成电影在线播放| 五月婷婷深深爱| 精品日韩在线观看| 国产三级视频在线播放| 欧美色图一区二区三区| 国产午夜无码视频在线观看| 图片区日韩欧美亚洲| 国产一级aa大片毛片| 亚洲欧美aⅴ...| 久草视频手机在线| 中文字幕在线一区二区三区| 神马久久久久久久久久久| 91香蕉视频污| 伊人网在线视频观看| 久久欧美中文字幕| 中文字字幕码一二三区| 91视频免费播放| 中文字幕在线免费看线人| 99re热这里只有精品免费视频| av电影中文字幕| 国产成人精品亚洲777人妖| 久久久久亚洲av无码网站| 国产成人在线视频网站| 无码人妻丰满熟妇啪啪网站| 国产福利一区在线| 无码国产精品一区二区免费式直播| 国产精品一区三区| 在线xxxxx| caoporm超碰国产精品| 午夜一区二区三区免费| 久久久影视传媒| 国产sm调教视频| 国产精品系列在线| 男人av资源站| 亚洲一区二区偷拍精品| 日产精品久久久久| 色香蕉成人二区免费| 成人毛片一区二区三区| 777欧美精品| www.我爱av| 精品性高朝久久久久久久| 色播色播色播色播色播在线 | 精品国产一区二区三区免费| 日韩有码av| 午夜精品美女久久久久av福利| 久久看人人摘| 国产av熟女一区二区三区| 国产亚洲激情| 久久精品影视大全| 国产盗摄一区二区三区| 自拍视频一区二区| 中文一区在线播放| 欧美人妻精品一区二区免费看| 亚洲成人激情综合网| 欧美一级淫片免费视频黄| 欧美日韩国产高清一区二区| 丰满人妻一区二区三区四区53| 亚洲美女久久久| 久久五月精品| 91av在线国产| 色999韩欧美国产综合俺来也| 国产精品福利视频| 欧洲激情视频| 成人毛片一区二区| 久久99久久精品欧美| 欧美日韩人妻精品一区在线| 中文字幕+乱码+中文字幕一区| 欧美交换国产一区内射| 在线视频你懂得一区二区三区| aaa一区二区三区| 亚洲视频在线免费观看| 免费在线观看av电影| 国产精品久久一区| 国内精品偷拍| 椎名由奈jux491在线播放| 亚洲永久在线| 中文字幕久久久久久久| 日本一区二区成人| 青青操免费在线视频| 日韩一区二区视频| 98在线视频| 青草青草久热精品视频在线网站| 亚洲国产高清在线观看| 亚洲精品美女久久7777777| 国产日产高清欧美一区二区三区| 亚洲第一成肉网| 欧美激情在线免费观看| 久久国产视频播放| 精品乱人伦小说| 久久亚洲天堂| 国产欧美日韩视频| 日韩深夜福利| 欧美,日韩,国产在线| 国产精品资源站在线| 在线观看亚洲大片短视频| 欧美日韩中文字幕| 色婷婷视频在线| 九九热99久久久国产盗摄| 少妇高潮一区二区三区99| 日韩久久久久久久久久久久久| 亚洲免费中文| 国产精品300页| 香港成人在线视频| 蜜桃视频污在线观看| 欧美风情在线观看| 日韩精品成人在线观看| 一区二区三区国产福利| 免费成人在线观看视频| 一级黄色录像毛片| 色欧美日韩亚洲| 巨骚激情综合| 国产成+人+综合+亚洲欧洲| 亚洲天堂日韩在线| 青青草原av在线播放| 99久久久免费精品国产一区二区| 国产精品成人aaaa在线| 亚洲成年人在线播放| 爱情岛论坛亚洲品质自拍视频网站| 亚洲综合精品一区二区| 欧美激情视频一区二区三区免费| xxx中文字幕| 亚洲另类春色国产| 亚洲国产www| 国内精品一区二区三区四区| 欧美电影在线观看完整版| 成人在线观看你懂的| 26uuu亚洲| 伊人久久中文字幕| 中文字幕日韩在线播放| 亚洲欧美久久精品| 天堂а√在线中文在线| 成人美女视频在线看| 日韩欧美一级视频| 亚洲人成在线电影| 欧美成人免费全部网站| 久久久国产精华液999999| 国产精品一区二区在线观看网站| 欧美日韩成人免费观看| 亚洲第一在线视频| 欧美xxxxxx| 一本—道久久a久久精品蜜桃| 国产老妇另类xxxxx| 丰满少妇乱子伦精品看片| 亚洲欧洲成视频免费观看| 久久婷婷五月综合色丁香| 五月天综合婷婷| 97se狠狠狠综合亚洲狠狠| 天天爱天天做天天爽| 久久亚洲精品网站| 国产日韩三级| 五月婷婷之综合激情| 亚洲欧美偷拍卡通变态| 人妻妺妺窝人体色www聚色窝 | 中文字幕丰满人伦在线| 免费av一区二区| 亚洲制服欧美另类| 午夜久久福利视频| 亚洲成a人片在线观看中文| 国产视频福利在线| 91久久极品少妇xxxxⅹ软件| 亚洲一区日本| 波多野结衣久久久久| 亚洲精品久久久久久久久久久| 台湾成人免费视频| 真人抽搐一进一出视频| 国产欧美精品区一区二区三区| 亚洲AV无码成人片在线观看| 日本欧美黄网站| 欧美视频四区| 在线观看日本黄色| 亚洲精品美女免费| 国产精品一区免费在线| 欧美a在线视频|