精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

基于DeepSeek推理的文本聚類 原創

發布于 2025-3-31 08:25
瀏覽
0收藏

開發人員需要開發和理解一種新的文本聚類方法,并使用DeepSeek推理模型解釋推理結果。

本文將探索大型語言模型(LLM)中的推理領域,并介紹DeepSeek這款優秀工具,它能幫助人們解釋推論結果,構建能讓終端用戶更加信賴的機器學習系統。

在默認情況下,機器學習模型是一種黑盒,不會為決策提供開箱即用的解釋(XAI)。本文介紹如何使用DeepSeek模型,并嘗試將解釋或推理能力添加到機器學習世界中。

方法?

首先構建自定義嵌入和嵌入函數來創建向量數據存儲,并使用DeepSeek模型來執行推理。

以下是展示整個流程的一個簡單的流程圖。

基于DeepSeek推理的文本聚類-AI.x社區

數據?

(1)選擇一個新聞文章數據集來識別新文章的類別。該??數據集??可在Kaggle網站上下載。?

(2)從數據集中,使用short_description進行向量嵌入,并使用類別特征為每篇文章分配適當的標簽。

(3)數據集相當干凈,不需要對其進行預處理。

(4)使用pandas庫加載數據集,并使用scikit-learn將其拆分為訓練和測試數據集。

1 import pandas as pd
2
3 df = pd.read_json('./News_Category_Dataset_v3.json',lines=True)
4
5 from sklearn.model_selection import train_test_split
6 # Separate features (X) and target (y)
7 X = df.drop('category', axis=1)
8 y = df['category']
9
10 # Split data into training and testing sets
11 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
12
13 train_df = pd.concat([X_train, y_train], axis=1)
14 test_df = pd.concat([X_test, y_test], axis=1)

生成文本嵌入?

使用以下庫進行文本嵌入:

  • langchain—用于創建示例提示和語義相似性選擇器
  • langchain_chroma—用于創建嵌入并將其存儲在數據存儲中

1 from chromadb import Documents, EmbeddingFunction, Embeddings
2
3 from langchain_chroma import Chroma
4 from langchain_core.example_selectors import SemanticSimilarityExampleSelector
5 from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

接下來,將構建自定義嵌入和嵌入函數。這些自定義函數將允許查詢部署在本地或遠程實例上的模型。

閱讀器可以為部署在遠程實例上的實例合并必要的安全機制(HTTPS、數據加密等),并調用REST端點來檢索模型嵌入。

1 class MyEmbeddings(Embeddings):
2
3 def __init__(self):
4 # Server address and port (replace with your actual values)
5 self.url = ""
6 # Request headers
7 self.headers = {
8 "Content-Type": "application/json"
9 }
10
11 self.data = {
12 # Use any text embedding model of your choice
13 "model": "text-embedding-nomic-embed-text-v1.5",
14 "input": None,
15 "encoding_format": "float"
16 }
17
18 def embed_documents(self, texts):
19 embeddings = []
20 for text in texts:
21 embeddings.append(self.embed_query(text))
22 return embeddings
23
24 def embed_query(self, input):
25 self.data['input'] = input
26 with requests.post(self.url, headers=self.headers, data=json.dumps(self.data)) as response:
27 res = response.text
28 yaml_object = yaml.safe_load(res)
29 embeddings = yaml_object['data'][0]['embedding']
30 return embeddings
31
32
33
34 class MyEmbeddingFunction(EmbeddingFunction):
35
36 def __call__(self, input: Documents) -> Embeddings:
37 return MyEmbeddings()

將定義一個簡單的函數,它將為新聞文章創建一個語義相似性選擇器。選擇器將用于使用訓練數據集創建向量嵌入。

1 def create_semantic_similarity_selector(train_df):
2
3 example_prompt = PromptTemplate(
4 input_variables=["input", "output"],
5 template="Input: {input}\nOutput: {output}",
6 )
7
8 # Examples of a pretend task of creating antonyms.
9 examples = []
10
11 for row in train_df.iterrows():
12 example = {}
13 example['input'] = row[1]['short_description']
14 example['output'] = row[1]['category']
15 examples.append(example)
16
17 semantic_similarity_selector = SemanticSimilarityExampleSelector.from_examples(
18 # The list of examples available to select from.
19 examples,
20 # The embedding class used to produce embeddings which are used to measure semantic similarity.
21 MyEmbeddings(),
22 # The VectorStore class that is used to store the embeddings and do a similarity search over.
23 Chroma,
24 # The number of examples to produce.
25 k=1,
26 ) 
27
28 return semantic_similarity_selector

調用上面的函數來生成新聞文章的嵌入。需要注意的是,訓練過程可能很耗時,可以將其并行化以使其更快運行。

1 semantic_similarity_selector = create_semantic_similarity_selector(train_df)

色度向量數據存儲用于存儲各種新聞文章及其相關標簽的向量表示。然后使用數據存儲中的嵌入來執行與測試數據集中文章的語義相似性,并檢查該方法的準確性。

將調用DeepSeek REST端點,并將從語義相似性選擇器接收到的響應和實際結果傳遞給測試數據集。隨后,將創建一個包含DeepSeek模型進行推理所需信息的上下文。

1 def explain_model_result(text, model_answer, actual_answer):
2 # REST end point for deepseek model.
3 url = ""
4 
5 # Request headers
6 headers = {
7 "Content-Type": "application/json"
8 }
9
10 promptJson = {
11 "question": 'Using the text, can you explain why the model answer and actual answer match or do not match ?',
12 "model_answer": model_answer,
13 "actual_answer": actual_answer,
14 "context": text,
15 }
16 prompt = json.dumps(promptJson)
17
18 # Request data (replace with your prompt)
19 data = {
20 "messages": [{"role": "user", "content": prompt}],
21 "temperature": 0.7,
22 "stream": True
23 }
24 captured_explanation = ""
25 with requests.post(url, headers=headers, data=json.dumps(data), stream=True) as response:
26 if response.status_code == 200:
27 for chunk in response.iter_content(chunk_size=None):
28 if chunk:
29 # Attempt to decode the chunk as UTF-8
30 decoded_chunk = chunk.decode('utf-8') 
31 # Process the chunk as a json or yaml to extract the explanation and concat it with captured_explanation object.
32 captured_explanation += yaml.safe_load(decoded_chunk)['data']['choices'][0]['delta']['content']
33 else:
34 print(f"Request failed with status code {response.status_code}")
35
36 return captured_explanation

以下解析測試數據集,并從DeepSeek模型中獲取解釋。

1 results_df = pd.DataFrame()
2 results_df['input'] = None
3 results_df['model_answer'] = None
4 results_df['actual_answer'] = None
5 results_df['explanation'] = None
6 for row in test_df.iterrows():
7 example = {}
8 example['input'] = row[1]['short_description']
9 model_result_category = semantic_similarity_selector.select_examples(example)
10 example['explanation'] = explain_model_result(example['input'],model_result_category[0]['output'],row[1]['category'])
11 example['model_answer'] = model_result_category[0]['output']
12 example['input'] = row[1]['category']
13 results_df.loc[len(results_df)] = example

結果?

以下將分享測試數據集中一些場景的結果。

第一個例子是當從語義相似性中捕獲的答案與測試數據集中的實際答案不匹配時。這種洞察力使人們能夠了解模型在做出預測時是否合理。think標簽提供了DeepSeek模型的初始思維過程,以理解問題陳述,然后為最終用戶整理答案。

在第一個例子中,DeepSeek可以解釋為什么模型得到了錯誤的答案。該模型只考慮句子中的旅游(TRAVEL)方面,而沒有考慮娛樂(ENTERTAINMENT)方面。這意味著嵌入模型需要更多的娛樂示例進行訓練。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "TRAVEL" and the actual answer is "ENTERTAINMENT." The context given is about going to Central Park and the Delacorte Theater to see Shakespeare under the night sky, with rain expected.
4
5 First, I need to understand what each term refers to. TRAVEL relates to visiting places, moving around, or tourism in general. ENTERTAINMENT is more about enjoyable activities, like theater, concerts, movies, etc., that provide pleasure.
6
7 Looking at the context: the person went to Central Park, which is a place they traveled to. Then they went to the Delacorte Theater for a Shakespeare performance. So, the main activities are both TRAVEL and ENTERTAINMENT because they're going out, seeing a play.
8
9 But why would there be a mismatch between model and actual answers? Maybe the model didn't consider that travel can also include attending theater or other performances as part of the entertainment aspect. So the actual answer is broader, including both aspects, while the model focuses only on TRAVEL.
10
11 Alternatively, perhaps the context doesn't emphasize one over the other. The key points are moving to a place (TRAVEL) and attending an event for enjoyment (ENTERTAINMENT). Depending on the focus, either could be considered the main answer, but typically, when someone goes somewhere to attend an event, both travel and entertainment elements come into play.
12
13 So, the model answer might have only picked TRAVEL, not considering ENTERTAINMENT. The actual answer includes both aspects, hence the mismatch.
14
15 </think>
16
17 The discrepancy between the model answer "TRAVEL" and the actual answer "ENTERTAINMENT" arises from the context provided. While travel is indeed part of the narrative—visiting Central Park—the primary focus is on attending a theater performance, which falls under entertainment. The actual answer captures both elements: moving to a place (travel) and engaging in an enjoyable event (entertainment). Thus, the model may have overlooked the entertainment aspect, considering only travel, whereas the actual response encompasses both activities.
18
19 **Answer:** 
20
21
21 The model answer "TRAVEL" focuses on visiting places, while the actual answer "ENTERTAINMENT" includes attending a theater performance. The context highlights both elements, leading to the mismatch in answers.

需要考慮模型的答案和實際答案不匹配的場景。然而,該模型在預測方面是合理的。

在第二個例子中,發生在法國的持械搶劫是一種犯罪(CRIME),因此將用戶文章標記為犯罪的模型不一定是錯誤的。DeepSeek的推理能夠為結果提供合理的理由。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "CRIME" and the actual answer is "WORLD NEWS" given the context: "French police recovered the merchandise stolen in an armed robbery on Wednesday." 
4
5 First, I need to understand what each part of this question is asking. The user wants me to explain why these two answers match or don't match based on the provided text. So, maybe I should start by analyzing the context and seeing how it relates to both CRIME and WORLD NEWS.
6
7 Looking at the context: It's about French police recovering stolen merchandise from an armed robbery. An armed robbery is definitely a crime, so that makes sense why "CRIME" is an answer. The model answer being CRIME aligns with the event described because it's a criminal act—a robbery.
8
9 Now, why is WORLD NEWS also an answer? Well, if I think about news in general, events like this are newsworthy. So perhaps the actual answer is considering that this incident is part of world news because it involves police action and theft, which can be significant enough to be reported internationally.
10
11 But wait, does the context specify whether it's considered world news or not? It just mentions French police recovering stolen goods in an armed robbery on Wednesday. Without more details about the scale or international implications, I'm not sure if it's explicitly world news. Maybe WORLD NEWS is a broader category that includes such events as part of their reporting.
12
13 So, why do they match and why don't they? They both are relevant because CRIME is directly related to the event, while WORLD NEWS is considering the newsworthiness of the event. But perhaps the model answer is more focused on the specific event being a crime, whereas WORLD NEWS is taking a broader view of news events.
14
15 I'm also thinking about how each answer approaches the context differently. The model answer is zeroing in on the type of event (crime), while the actual answer is considering it as a newsworthy event that might be reported in world news sections or channels.
16
17 So, to sum up, both answers are relevant but approach the context from different angles—Crime specifically relates to the event's nature, whereas WORLD NEWS broadens it into the realm of news reporting.
18
19 </think>
20
21 The model answer "CRIME" and the actual answer "WORLD NEWS" both address the provided context, but they do so from different perspectives. 
22
23 **CRIME**: The context explicitly describes an armed robbery, which is a criminal act. Therefore, "CRIME" directly relates to the nature of the event.
24
25 **WORLD NEWS**: While the event is indeed newsworthy, the term "WORLD NEWS" broadens the scope beyond the specific details, considering it as part of international or general news reporting.
26
27 In essence, both answers are relevant but focus on different aspects: "CRIME" highlights the event's nature as a criminal act, while "WORLD NEWS" recognizes its potential newsworthiness.

當模型和實際答案匹配時,將考慮推理。

匹配結果背后的推理增強了人們的信任,并建立了對模型預測的信心。

1 <think>
2
3 Okay, so I'm trying to understand why the model answer and the actual answer both say "MEDIA" when explaining the context. The question is asking me to explain whether they match or not based on the given text.
4
5 First, let me look at the context provided: "The newsroom is awash with fears about the casino mogul's intentions after his refusal to admit ownership." This sentence mentions a casino mogul and their refusal to own up to something. That refusal is causing fear in the newsroom regarding their intentions.
6
7 Now, looking at both the model answer and the actual answer, they both are "MEDIA". I think this might be an abbreviation or shorthand for media-related reasons. The context talks about the newsroom, which is a place associated with media organizations or journalists. So, when there's fear about someone's intentions, especially related to ownership, it makes sense that the media would be concerned and involved.
8
9 Wait, but why specifically does it say "MEDIA"? Maybe it's short for something else or maybe it's just a coincidence. However, given that the context is in a newsroom setting, it's likely referring to media-related issues.
10
11 Let me break it down: The casino mogul refusing ownership could imply some kind of hidden agenda or control. Since this is in a newsroom, which deals with reporting and information, the refusal might be seen as trying to hide something. This fear could lead to media coverage or reporting on it, hence the mention of MEDIA.
12
13 So, putting it together, both answers refer to the involvement or concern of media outlets regarding the casino mogul's actions. Therefore, they match because the context clearly ties into a media-related situation.
14
15 </think>
16
17 The model answer and actual answer both state "MEDIA" because the context provided refers to a newsroom setting, where concerns about a casino mogul's intentions are likely related to media involvement or reporting. The refusal to admit ownership sparks fear, suggesting possible media coverage or concerns, thus aligning both answers with the media-related context. 
18
19 **Answer:** Both answers match because the context involves a newsroom, indicating media-related concerns over a casino mogul's intentions.

結論

推理的力量使用戶對模型的功能有了寶貴的了解,并凸顯了其優勢與不足。它增強了對系統的理解,并提供了改進系統的路徑。

設想一個只提供推理決策而不提供任何解釋的模型,那么用戶將永遠無法理解為什么模型會提供這些決策,并且可能難以對其產生信心。

原文標題:??Text Clustering With Deepseek Reasoning??,作者:Kalpan Dharamshi

?著作權歸作者所有,如需轉載,請注明出處,否則將追究法律責任
收藏
回復
舉報
回復
相關推薦
国产成人免费观看网站| 成人短视频在线看| 免费av网站在线| 秋霞影院一区二区三区| 亚洲久草在线视频| 亚洲在线观看视频| 免费观看特级毛片| 成人免费91| 一区二区三区欧美激情| 国产乱码精品一区二区三区日韩精品| 精品无码久久久久| 日韩在线黄色| 日本精品视频一区二区| 亚洲精品一品区二品区三品区 | 中文字幕一区二区三区视频| 国产在线一区二区三区| 久久久久久久久毛片| 国产精品17p| 色综合久久久久| 一区二区精品免费视频| 亚洲国产剧情在线观看| 午夜在线精品偷拍| 日韩中文字幕在线播放| 日韩精品――色哟哟| 午夜久久中文| 国产精品日产欧美久久久久| 国产精品jizz视频| 波多野结衣绝顶大高潮| 欧美在线黄色| 亚洲精品自拍偷拍| 欧美三级理论片| √天堂8在线网| 91在线码无精品| 国产精品中文久久久久久久| 久草中文在线视频| 精品国产午夜| 欧美xfplay| 91香蕉视频污版| 爱情岛论坛亚洲品质自拍视频网站| 26uuu国产一区二区三区| 成人亚洲综合色就1024| 岛国av中文字幕| 国产精品99免费看| 日韩中文字幕免费| 国内精品久久99人妻无码| 国产视频一区二区在线播放| 色天使久久综合网天天| 日本男女交配视频| 亚乱亚乱亚洲乱妇| 久久精品亚洲麻豆av一区二区| 97免费资源站| 亚洲天堂国产精品| 久久亚洲影院| 午夜精品久久久久久99热| 国产美女高潮视频| 欧美亚洲国产激情| 日韩精品在线观看一区| av av在线| 精品麻豆剧传媒av国产九九九| 欧亚一区二区三区| 国产精品视频一区二区三区四区五区| 久久不射影院| 亚洲精品日韩专区silk| 秋霞在线一区二区| 免费av在线网址| 欧美国产日本韩| 欧美大陆一区二区| 天天av综合网| av毛片久久久久**hd| 99国产在线视频| 99在线观看精品视频| 久久99热99| 成人av在线网址| 亚洲最新av网站| 麻豆极品一区二区三区| 国产精品入口免费视| 波多野结衣一本一道| 久久综合狠狠| 国产成人一区二区三区| 久久久久久在线观看| 久久午夜视频| 国产成人免费av电影| 91午夜精品亚洲一区二区三区| 噜噜噜91成人网| 国产99视频在线观看| 无码无套少妇毛多18pxxxx| 首页欧美精品中文字幕| 国产精品久久久久久av下载红粉 | 蜜臀尤物一区二区三区直播| 久久亚洲国产精品一区二区| 日韩美女福利视频| 亚洲精品国产无码| 看国产成人h片视频| 成人两性免费视频| 精品人妻伦一区二区三区久久| 国产精品一级片| 国产91免费视频| 五月天婷婷激情网| 国产丝袜欧美中文另类| 亚洲在线观看一区| 污片视频在线免费观看| 无码av中文一区二区三区桃花岛| 欧美日韩国产精品激情在线播放| 精品欧美一区二区三区在线观看 | 日本视频在线免费观看| 自拍偷拍国产精品| 激情五月婷婷六月| 亚洲欧美电影| 欧美日韩免费观看一区二区三区| 香蕉视频xxxx| 欧美18xxxx| 国产亚洲xxx| √天堂中文官网8在线| 亚洲精品裸体| 国产精品福利在线观看网址| 国产熟女一区二区三区四区| 99re成人在线| 亚洲国产精品影视| 久草免费在线视频| 欧美老女人在线| 国产又粗又猛又色| 97精品国产福利一区二区三区| 欧美精品成人在线| 亚洲免费视频二区| 不卡免费追剧大全电视剧网站| 欧美在线激情| 蜜桃成人365av| 在线观看欧美日本| yjizz视频| 999国产精品永久免费视频app| 色中色综合影院手机版在线观看 | 日本韩国精品一区二区在线观看| 性色av浪潮av| 日本久久精品| 97成人精品区在线播放| 国产精品久久久久久69| 91麻豆国产香蕉久久精品| 韩国成人动漫在线观看| 日韩大片在线永久免费观看网站| 亚洲国产一区视频| 少妇网站在线观看| 亚洲欧美日本伦理| 欧美成人午夜免费视在线看片| 天堂在线免费观看视频| 国产一区二区不卡| 欧美性天天影院| 青青草原国产在线| 69久久99精品久久久久婷婷| 成年人网站免费看| 久久理论电影| 91精品国产高清久久久久久久久| 亚洲综合五月天婷婷丁香| 2020日本不卡一区二区视频| 一本色道久久综合亚洲精品婷婷| 美女福利一区二区三区| 精品国产一区久久| 国产精品视频看看| 日韩精品1区2区3区| 国产传媒欧美日韩| 免费av在线电影| 中文字幕精品一区| 黄色www网站| av在线亚洲一区| 亚洲日本欧美中文幕| 久草成人在线视频| 精品一区二区免费在线观看| 日韩不卡av| 国产美女福利在线观看| 日韩欧美高清dvd碟片| 免费一级suv好看的国产网站| 在线成人www免费观看视频| 国产精品一二区| 全部免费毛片在线播放网站| 亚洲成人免费视| 色网站在线视频| 国产高清一区二区| 国产精品久久久久久影视 | 亚洲的天堂在线中文字幕| 黑鬼狂亚洲人videos| 男女激情视频一区| 一区高清视频| 免费视频观看成人| 最近中文字幕日韩精品| 欧美日韩 一区二区三区| 久久久美女艺术照精彩视频福利播放| 日韩国产小视频| 盗摄系列偷拍视频精品tp| 欧美黄色片免费观看| 精品人妻一区二区三区日产乱码| 玉米视频成人免费看| 先锋资源在线视频| 中文字幕一区二区三区乱码图片 | www.四虎在线观看| 亚洲激情自拍偷拍| 中文字幕线观看| 欧美激情视频一区二区三区免费| av一区二区三区在线观看| 性欧美ⅴideo另类hd| 日韩精品一区二区三区视频播放| 久久久全国免费视频| 成人av电影在线| 噜噜噜久久亚洲精品国产品麻豆| 婷婷精品在线| 国产成人福利网站| 91精品国产91久久久久游泳池| 欧美日韩国产综合一区二区| 国模无码国产精品视频| 成人av免费在线| 国产福利视频在线播放| 精品日产免费二区日产免费二区| 国产精品爽黄69天堂a| 黄网站在线免费看| 精品国产免费人成在线观看| 激情网站在线观看| 亚洲欧美日韩久久精品| 亚洲色图欧美另类| 久久婷婷亚洲| 中文字幕一区二区三区四区五区人| 成人97精品毛片免费看| 欧美一区二区视频97| 9191在线观看| 日韩欧美国产高清| 五月天激情四射| 中文字幕一区二区三区色视频 | 蜜桃视频在线观看播放| 日韩经典中文字幕| 国产精品乱码一区二区| 午夜精品在线看| 国产91丝袜美女在线播放| 国产一区二区视频在线播放| 欧美精品99久久| 91亚洲一区| 欧美日韩一区二区三| 亚洲伦理网站| 97视频在线观看网址| 免费a级在线播放| 亚洲精品电影在线观看| 欧美精品久久久久久久免费观看 | 手机福利在线视频| 巨人精品**| 国产精品久久久久久亚洲调教| 亚洲综合图区| 一区二区三区亚洲| 少妇人妻一区二区| 欧美日韩午夜在线视频| 在线观看日本视频| 亚洲一区免费在线观看| 久久久久久久久福利| 白白色亚洲国产精品| 中文字幕1234区| 国产亚洲在线观看| 男人草女人视频| 日韩欧美网址| 久久久久高清| www.丝袜精品| 国产精品主播视频| 亚洲四虎影院| 人妖精品videosex性欧美| 欧美精品videosex| 久久精品成人动漫| 成人三级黄色免费网站| 在线观看国产精品日韩av| 日本一区高清| 日韩www在线| www.激情五月.com| 在线播放/欧美激情| 国产免费不卡av| 欧美欧美欧美欧美首页| 中文字幕永久在线| 色婷婷av一区二区三区gif| 国产成人在线播放视频| 午夜国产精品影院在线观看| 久久国产露脸精品国产| 亚洲精品久久久蜜桃| tube国产麻豆| 亚洲女子a中天字幕| 欧美性猛交xxxxx少妇| 一区在线播放视频| 99热这里只有精品4| 国产精品夫妻自拍| 亚洲国产精品一区二区久久hs| 国产午夜亚洲精品不卡 | 99久久久精品| 黄色国产在线视频| 国产99久久久国产精品| 国产精品久久久久久9999| 国产成人激情av| 美女又黄又免费的视频| 国产成人精品免费| 亚洲精品久久一区二区三区777| 国产一区二区精品在线观看| 中国黄色片视频| 99久久国产综合精品色伊| 国产精品伦子伦| 久久久av毛片精品| www.99热| 亚洲激情图片qvod| 久久久久久国产精品视频| 午夜影院久久久| 久久久久99精品成人片三人毛片| 色综合久久久久久久| hs视频在线观看| 精品成a人在线观看| 亚洲欧美色视频| 国产亚洲欧洲在线| 国产精品一二三区视频| 麻豆国产精品va在线观看不卡| 中文国产字幕在线观看| 欧美激情精品久久久久久黑人| 韩国成人二区| 国产精品久久久久久久一区探花| 综合久久成人| 久久精品人成| 日韩精品久久| 日韩亚洲欧美一区二区| 亚洲人成毛片在线播放女女| 999精彩视频| 国产乱人伦偷精品视频免下载| 91九色蝌蚪porny| 国产亚洲综合色| 91aaa在线观看| 福利微拍一区二区| 国产熟女一区二区三区四区| 精品99999| 搞黄网站在线观看| 欧美在线影院在线视频| 日本精品久久| 精品蜜桃传媒| 欧美久久99| 国产成人久久777777| 国产一区在线不卡| 无码人妻精品一区二区三区温州| 国产精品午夜久久| 国产成人无码精品久久久久| 91 com成人网| 亚洲区小说区图片区| 久久精品一区中文字幕| 视频在线日韩| 国产精品一码二码三码在线| 欧美一级精品片在线看| 成人黄色av片| 国产激情一区二区三区四区| 午夜在线观看一区| 亚洲成va人在线观看| 91久久精品无码一区二区| 欧美成人一区二区三区片免费| 成全电影播放在线观看国语| 欧美国产欧美亚洲国产日韩mv天天看完整| 欧美xx视频| 国产精品区一区二区三在线播放| 成人羞羞网站| 国产v亚洲v天堂无码久久久| 成人精品高清在线| 欧美日韩偷拍视频| 欧美午夜片在线看| 国产综合在线观看| 国内揄拍国内精品少妇国语| 高清久久一区| 视频在线99re| 蜜臀av性久久久久蜜臀aⅴ| 国产精品jizz| 亚洲一区二区不卡免费| 国产免费一区二区三区免费视频| 欧美激情91| 亚洲精品一卡二卡三卡四卡| 午夜影院日韩| chinese麻豆新拍video| 亚洲日本在线视频观看| 国产精品国产一区二区三区四区| 中文字幕欧美视频在线| 香蕉成人影院| 青青草成人网| 青草国产精品久久久久久| 毛片网站免费观看| 天天色综合天天| 午夜福利一区二区三区| 97av在线视频| 日韩大尺度在线观看| 国产午夜伦鲁鲁| 99久久er热在这里只有精品66| 青青青国产在线 | 午夜看片在线免费| 97avcom| 久久99精品国产自在现线| 国产69精品久久久久久久| 99久久久精品| 小泽玛利亚一区二区三区视频| 在线日韩第一页| 亚洲一区二区三区四区| 亚洲高清资源综合久久精品| 免费看黄色91| 潘金莲一级黄色片| 欧美一区二区三区在| yellow91字幕网在线| 99热国产免费| 亚洲区国产区| 国产aⅴ激情无码久久久无码| 欧美性淫爽ww久久久久无| 在线观看a级片| 国产精品久久一区二区三区|