精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

斯坦福最新研究警告:別太迷信大模型涌現能力,那是度量選擇的結果

人工智能 新聞
大模型出現后,涌現這一術語開始流行起來,通常表述為在小規模模型中不存在,但在大規模模型中存在的能力。但斯坦福大學的研究者對 LLM 擁有涌現能力的說法提出了質疑,他們認為是人為選擇度量方式的結果。

「別太迷信大模型的涌現,世界上哪兒有那么多奇跡?」斯坦福大學的研究者發現,大模型的涌現與任務的評價指標強相關,并非模型行為在特定任務和規模下的基本變化,換一些更連續、平滑的指標后,涌現現象就不那么明顯了,更接近線性。

近期,由于研究者們觀察到大型語言模型(LLMs),如 GPT、PaLM、LaMDA 可以在不同的任務中表現出所謂的「涌現能力」,這一術語在機器學習領域得到了極大關注:

圖片

事實上,復雜系統的新興特性一直以來都是物理學、生物學、數學等學科在研究的重點。

值得注意的一個觀點是,諾貝爾物理學獎獲得者 P.W.Anderson 提出了「More Is Different」。這一觀點認為,隨著系統復雜性的增加,新的屬性可能會具象化,即使從對系統微觀細節的精確定量理解中并不能(容易或根本無法)預測到。

大模型領域的「涌現」如何定義?一種通俗的說法是「在小規模模型中不存在,但在大規模模型中存在的能力」,因此,它們不能通過簡單地推斷小規模模型的性能改進來預測。

這種涌現的能力可能首先在 GPT-3 家族中被發現。后續的一些工作強調了這一發現:「雖然模型性能在一般水平上是可以預測的,但在特定任務上,其性能有時會在規模上出現相當難以預測的涌現」。事實上,這些涌現能力非常令人驚訝,以至于「突然的、特定的能力擴展」已經被認為是 LLM 的兩個最高定義特征之一。此外,「breakthrough capabilities」和「sharp left turns」等術語也被使用。

綜上所述,我們可以確定 LLM 涌現能力的兩個決定性屬性:

1. 敏銳性,從「不存在」到「存在」似乎只是瞬間的過渡;

2. 不可預測性,在看似不可預見的模型規模內過渡。

與此同時,還有一些問題懸而未決:是什么控制了哪些能力會涌現?什么控制著能力的涌現?我們怎樣才能使理想的能力更快地涌現,并確保不理想的能力永不涌現?

這些問題與人工智能的安全和對齊息息相關,因為涌現的能力預示著更大的模型可能有一天會在沒有警告的情況下獲得對危險能力的掌握,這是人類不希望發生的。

在最新的一篇論文中,斯坦福大學的研究者對 LLM 擁有涌現能力的說法提出了質疑。

圖片

論文:https://arxiv.org/pdf/2304.15004.pdf

具體而言,此處的質疑針對的是在特定任務中模型輸出作為模型規模的函數而發生的涌現和不可預測的變化。

他們的懷疑基于以下觀察:似乎只有在非線性或不連續地擴展任何模型的 per-token 錯誤率的度量下,模型才會出現涌現能力。例如,在 BIG-Bench 任務中,>92% 的涌現能力是這兩個度量下出現的:

圖片

這就為 LLMs 的涌現能力的起源提出了另一種解釋的可能性:盡管模型族的 per-token 錯誤率會隨著模型規模的增加進行平滑、持續且可預測地變化,但看似尖銳和不可預測的變化可能是由研究者選擇的測量方法引起的

也就是說,涌現能力可能是一種海市蜃樓,主要是由于研究者選擇了一種非線性或不連續地改變 per-token 錯誤率的度量,部分原因是由于擁有太少的測試數據,不足以準確估計較小模型的性能(從而導致較小的模型看起來完全不能執行任務),另一部分原因是由于評估了太少的大規模模型。

為了闡述這種解釋方式,研究者將其作為一個簡單的數學模型,并證明它是如何從數量上再現為支持 LLM 的涌現能力而提供的證據。然后,研究者以三種互補的方式檢驗了這種解釋:

1. 使用 InstructGPT [24]/GPT-3 [3] 模型系列,根據替代假說做出、測試并確認三個預測。

2. 對先前的一些結果進行了元分析,并表明在任務指標 - 模型家族三聯體的空間中,出現的能力只出現在某些指標上,而不是任務上的模型家族(列)。該研究進一步表明,在固定的模型輸出上,改變度量會導致涌現現象的消失。

3. 故意在不同架構的深度神經網絡中誘導出多個視覺任務的涌現能力(這在以前從未被證明過),以顯示類似的度量選擇如何誘導出看似涌現的能力。

檢驗一:InstructGPT/GPT-3 模型系列分析

研究者選擇了 GPT 系列模型進行進一步分析,原因在于它是可公開查詢的,這一點和其他模型系列不同(例如 PaLM、LaMDA、Gopher、Chinchilla)。在此前的研究中,GPT 系列模型被認為在整數算術任務中展示出涌現能力。此處,研究者也選擇了整數算術這一任務。

圖片

圖 2: 大型語言模型的涌現能力是研究者分析的創造物,而不是模型輸出隨規模變化的根本性變化。

正如第 2 節中用數學和圖表解釋的那樣,研究者提出的替代解釋可以預測出三個結果:

1. 隨著模型規模提升,如果將度量從非線性 / 不連續的度量(圖 2CD)換成線性 / 連續的度量(圖 2EF),那么應該會有平滑的、連續的、可預測的性能提升。

2. 對于非線性的度量,如果通過增大測試數據集的大小而提升所測模型性能的分辨率,那么應該能讓模型得到平滑的、連續的、可預測的提升,并且該提升的比例與所選度量的可預測的非線性效應是相對應的。

3. 無論使用什么度量指標,提升目標字符串長度都應該會對模型性能產生影響,該影響是長度為 1 的目標性能的一個函數:對于準確度是近乎幾何的函數,對于 token 編輯距離是近乎準線性的函數。

為了測試這三個預測結論,研究者收集了 InstructGPT/GPT-3 系列模型在兩個算術任務上的字符串輸出結果:使用 OpenAI API 執行 2 個兩位數整數之間的兩樣本乘法以及 2 個四位數整數之間的兩樣本加法。

圖片

圖 3:隨著模型規模提升,改變度量可以為性能帶來平滑、連續、可預測的改變。

從左至右:數學模型,2 個兩位數整數乘法任務, 2 個四位數整數加法任務。上方的圖是使用一個非線性度量(如準確度)而測得的模型性能,可看到 InstructGPT/GPT-3 系列模型的性能在目標長度更長時顯得銳利和不可預測。而下方的圖是使用一個線性度量(如 token 編輯距離)而測得的模型性能,此系列模型表現出了平滑的、可預測的性能提升,這是研究者宣稱的涌現產生的能力。

預測:涌現能力在線性度量下會消失

在這兩個整數乘法和加法任務上,如果目標字符串的長度是 4 或 5 位數字并且性能的度量方式是準確度(圖 3 上一行圖),那么 GPT 系列模型會展現出涌現的算術能力。但是,如果將一個度量從非線性換成線性,同時保持模型的輸出固定,那么該系列模型的性能會得到平滑、連續和可預測的提升。這就確認了研究者的預測,由此表明銳利和不確定性的來源是研究者所選擇的度量,而非模型的輸出的變化。還可以看到,在使用 token 編輯距離時,如果將目標字符串的長度從 1 增大至 5,那么可預見該系列模型的性能會下降,并且下降趨勢是近乎準線性的,這符合第三個預測的前半部分。

預測:涌現能力隨著更高的分辨率評估的出現而消失

接下來是第二個預測:即使是用準確度等非線性度量,更小模型的準確度也不會為零,而是高于偶然性的非零值,其比例是與選擇使用準確度為度量相對應的。為了提升分辨率,以進一步能準確估計模型準確度,研究者還生成了其它一些測試數據,然后他們發現:不管是在整數乘法任務上還是在整數加法任務上,InstructGPT/GPT-3 系列的所有模型都得到了超過偶然性的正值準確度(圖 4)。這驗證了第二個預測。可以看到,隨著目標字符串長度增大,準確度會隨目標字符串的長度而呈現近乎幾何式的下降,這符合第三個預測的后半部分。這些結果還表明研究者選擇的準確度會產生一些我們應該能預料到的(近似)效果,即隨目標長度而近乎幾何式地衰減。

圖片

圖 4:使用更多測試數據集得到了更好的準確度估計,這揭示出性能的變化是平滑的、連續的和可預測的。

從左至右:數學模型,2 個兩位數整數乘法任務, 2 個四位數整數加法任務。通過生成更多測試數據來提升分辨率,揭示出即使是在準確度度量上,InstructGPT/GPT-3 系列模型的性能也是超出偶然結果的,并且其在兩種涌現能力上的提升是平滑的、連續的和可預測的,這兩種涌現能力的結果在定性上是與數學模型相符的。

檢驗二:模型涌現的元分析

由于 GPT 系列模型是可以公開查詢使用的,因此可以對它們進行分析。但是,其它一些也有人聲稱具備涌現能力的模型(比如 PaLM、Chinchilla、Gopher)卻并不是公開可用的,它們生成的輸出也沒有公開,這意味著研究者在分析已發表結果時是受限的。研究者基于自己提出的替代假設給出了兩個預測:

  • 第一,在「任務 - 度量 - 模型系列」三元組的「群體層面(population level)」上,當選擇使用非線性和 / 或非連續度量來評估模型性能時,模型應當會在任務上表現出涌現能力。
  • 第二,對于展現出了涌現能力的特定「任務 - 度量 - 模型系列」三元組,如果將度量改變成線性和 / 或連續度量,那么涌現能力應該會被消除。

為了測試這兩個假設,研究者調查了聲稱在 BIG-Bench 評估套件上涌現出的能力,因為在該套件上的基準是公開可用的,并且也有很好的文檔。

預測:涌現能力應該主要出現在非線性 / 非連續度量上

為了測試第一個預測,研究者分析了在哪些指標上,不同的「任務 - 模型系列」配對是否會出現涌現能力。為了確定一個「任務 - 度量 - 模型系列」三元組是否可能展現出涌現能力,他們借用了論文《Beyond the imitation game: Quantifying and extrapolating the capabilities of language models》中引入的定義。令 y_i ∈ R 表示模型大小為 x_i ∈ R 時的模型性能,并使得 x_i < x_i+1,則涌現分數為:

圖片

結果研究者發現,BIG-Bench 使用的大多數度量中沒有表現出涌現能力的「任務 - 模型系列」配對:在人們偏好的 39 個 BIG-Bench 度量中,至多 5 個展現出了涌現能力(圖 5A)。這 5 個大都是非線性的 / 非連續的,如精確字符串匹配、多選擇分級、ROUGE-L-Sum。值得注意的是,由于 BIG-Bench 通常使用多項度量來評估模型的任務表現,因此在其它度量下缺乏涌現能力這一現象說明:當使用其它度量來評價模型輸出時,涌現能力并不會出現。

由于涌現分數僅表明有涌現能力,因此研究者還進一步分析了論文《137 emergent abilities of large language models》中人工標注的「任務 - 度量 - 模型系列」三元組。人工標注的數據表明 39 個度量中僅有 4 個表現出了涌現能力(圖 5B),并且它們中的 2 個就占到了所宣稱的涌現能力的 92% 以上(圖 5C)。多選擇分級和精確字符串匹配。多選擇分級是非連續的,精確字符串匹配是非線性的(在目標長度度量上的變化是近乎幾何式的)。總體而言,這些結果說明涌現能力僅出現在非常少量的非線性和 / 或非連續度量上。

圖 5:僅有少數度量會出現涌現能力。(A) 在人們偏好的 39 個 BIG-Bench 度量中,至多只有 5 個度量上可能出現了涌現能力。(B) 所引論文中人工標注的數據表明僅有 4 個人們偏好的度量表現出了涌現能力。(C) 涌現能力中 > 92% 都出現在以下兩個度量之一上:多選擇分級和精確字符串匹配。

預測:如果替代非線性 / 非連續度量,涌現能力應該會被消除

對于第二個預測,研究者分析了前文所引論文中人工標注的涌現能力。他們關注的是 LaMDA 系列,因為其輸出可通過 BIG-Bench 獲取,而其它模型系列的輸出無法這樣獲取。在已經發表的 LaMDA 模型中,最小的有 20 億個參數,但 BIG-Bench 中的許多 LaMDA 模型都小很多,而且研究者表示由于無法確定這些更小模型的來源,因此沒有在分析中考慮它們。在分析中,研究者認定了在多選擇分級度量上 LaMDA 在哪些任務上展現出了涌現能力,然后他們提出了問題:當使用另一個 BIG-Bench 度量 Brier 分數時,LaMDA 能否在同樣的任務上展現出涌現能力。Brier 分數是一套嚴格適當(strictly proper)的評分規則,其度量的是互斥結果的預測;對于一個二元結果的預測,Brier 分數簡化成了結果及其預測概率質量之間的均方誤差。

研究者發現,當非連續度量多選擇分級變成連續度量 Brier 分數時(圖 6),LaMDA 的涌現能力消失了。這進一步說明涌現能力的成因并非是隨規模增長而導致的模型行為的本質變化,而是對非連續度量的使用

圖片

圖 6:在任務和模型系列保持不變的前提下改變 BIG-Bench 度量會導致涌現能力消失。上一行:當使用的是一個非連續度量(多選擇分級)時,LaMDA 模型系列展現出了涌現能力。下一行:當使用的是一個連續的 BIG-Bench 度量(Brier 分數)時,LaMDA 模型系列在同樣任務上不再有涌現能力。

檢驗三:誘導 DNN 出現涌現能力

研究者的觀點是可以通過度量的選擇來誘導模型產生涌現能力;為了證明這一點,他們展示了如何讓不同架構(全連接、卷積、自注意力)的深度神經網絡產生涌現能力。這里研究者重點關注的是視覺任務,原因有二。第一,人們現在主要關注大型語言模型的涌現能力,因為對于視覺模型而言,目前還沒有觀察到模型能力從無突然轉變到有的現象。第二,某些視覺任務用大小適中的網絡就足以解決,因此研究者可以完整構建出跨多個數量級規模的模型系列。

卷積網絡涌現出對 MNIST 手寫數字的分類能力

研究者首先誘導實現 LeNet 卷積神經網絡系列涌現出分類能力,訓練數據集是 MNIST 手寫數字數據集。這個系列展現出了隨參數數量增長,測試準確度平滑提升的現象(圖 7B)。為了模擬有關涌現的論文中使用的準確度度量,這里使用的是子集準確度(subset accuracy):如果該網絡從 K 個(獨立的)測試數據中正確分類出了 K 個數據,那么該網絡的子集準確度為 1,否則為 0。基于這一準確度定義,在 K 從 1 增長到 5 的設定中,該模型系列展現出了「涌現」能力,從而能夠正確分類 MNIST 數字集,尤其是結合了模型大小的稀疏采樣時(圖 7C)。這個卷積系列的涌現分類能力在定性分析上符合已發表論文中的涌現能力,比如在 BIG-Bench 的地形測繪任務上的結果(圖 7A)。

圖片

圖 7:在卷積網絡中誘導出涌現的 MNIST 分類能力。(A) 一篇已發表論文中的基于 BIG-Bench 地形測繪任務的涌現能力。(B) 在 MNIST 上訓練的 LeNet 表現出:隨模型參數數量增長,測試準確度展現出預測的、普遍的、S 形的增長。(C) 當把準確度重新定義成從 K 個獨立測試數據中正確分類出 K 個時,這個新定義的度量會誘導出一種似乎在預料之外的變化。

非線性自動編碼器在 CIFAR100 自然圖像集上涌現出重建能力

為了凸顯出研究者所選度量的銳利度是涌現能力的原因,并且為了表明這種銳利度不僅限于準確度等度量,研究者又誘導在 CIFAR100 自然圖像集上訓練的淺度(即單隱藏層)非線性自動編碼器涌現出重建圖像輸入的能力。為此,他們刻意定義了一個新的用于衡量模型能力的不連續度量,該度量為平方重建誤差低于固定閾值 c 的測試數據的平均數量:

圖片

其中 I (?) 是一個隨機指示變量,x^n 是自動編碼器對 x_n 的重建。研究者檢視了自動編碼器瓶頸單元的數量,然后發現隨模型規模增長,網絡的均方重建誤差會表現出平滑的下降趨勢(圖 8B),但如果使用新定義的重建度量,對于選定的 c,這個自動編碼器系列在重建該數據集上展現出的能力是銳利的和幾乎不可預測的(圖 8C),這個結果在定性分析上符合已發表論文中的涌現能力,比如 BIG-Bench 中的 Periodic Elements(周期性元素)任務(圖 8A)。

圖片

圖 8:在淺度非線性自動編碼器中誘導出涌現的重建能力。(A) 一篇已發表論文中的基于 BIG-Bench 周期性元素任務的涌現能力。(B) 在 CIFAR100 上訓練的淺度非線性自動編碼器展現出了平滑下降的均方重建誤差。(C) 使用新定義的重建度量(公式 2)誘導出了不可預測的變化。

自回歸 Transformer 在 Omniglot 字符集上涌現出了分類能力

接下來是 Transformer 的涌現能力,其使用的是自回歸方法來分類 Omniglot 手寫字符。研究者使用的實驗設置是類似的:Omniglot 圖像先由卷積層嵌入,然后以 [嵌入圖像,圖像類別標簽] 配對組成序列的方式輸入僅解碼器的 Transformer,而該 Transformer 的訓練目標是預測 Omniglot 類別標簽。研究者是在長度為 L ∈ [1, 5] 的序列上測量圖像分類性能,同樣是通過子集準確度來度量:如果所有 L 圖像都分類正確(圖 9B)則子集準確度為 1,否則為 0。Causal Transformer 在正確分類 Omniglot 手寫字符任務上似乎展現出了涌現能力(圖 9C),該結果在定性分析上符合已發表論文中的涌現能力,比如大規模多任務語言理解(圖 9A)。

圖片

圖 9:在自回歸 Transformer 中誘導出涌現的分類能力。(A) 一篇已發表論文中基于 MMLU 基準的涌現能力。(B) 隨模型參數增多,使用自回歸方法來分類 Omniglot 手寫數字的 Transformer 的測試準確度也表現為增長。(C) 當將準確度重新定義為正確分類序列中的所有圖像時,該指標更難被預測,這似乎說明誘導出了涌現能力。

責任編輯:張燕妮 來源: 機器之心
相關推薦

2023-12-08 13:22:00

數據模型

2025-07-14 08:57:00

2023-02-14 09:45:11

模型測試

2025-01-17 10:26:19

模型開發ChatGPT

2017-11-28 14:18:29

2025-10-31 16:06:19

AI參數微調

2023-07-21 14:47:24

AI訓練

2025-01-20 13:08:25

2024-03-26 06:40:06

大語言模型人工智能AI

2025-06-10 11:22:38

AIChatGPT壓縮

2022-07-14 15:08:23

AI模型

2013-01-31 09:45:14

斯坦福超級電腦百萬內核

2012-03-21 21:38:27

蘋果

2024-01-03 13:37:00

模型數據

2024-04-24 09:47:36

2022-02-23 14:36:31

AI數據研究

2023-03-22 15:14:00

數據模型

2022-01-11 10:22:26

量子計算芯片超算

2025-11-03 17:33:10

AI模型數據

2024-07-22 08:00:00

機器人虛擬
點贊
收藏

51CTO技術棧公眾號

www.日本久久久久com.| 久久久美女毛片| 欧美成人免费播放| 午夜av免费看| 国产精品亚洲成在人线| 亚洲专区一二三| 少妇特黄a一区二区三区| 国产精品九九九九| jizzjizz欧美69巨大| 3d成人h动漫网站入口| 国产毛片视频网站| 免费观看久久久久| 99精品欧美一区二区三区小说| 操日韩av在线电影| 日本一二三区在线| 天堂电影一区| 国产亚洲欧美日韩在线一区| 91久久精品国产91久久性色tv| 激情四射综合网| 亚洲欧美成人vr| 日韩亚洲国产中文字幕欧美| 成人黄色一区二区| 91短视频版在线观看www免费| 日韩av在线发布| 亚洲天堂av高清| 东京热av一区| 日韩成人一区| 91传媒视频在线播放| 欧美狂野激情性xxxx在线观| 欧美特黄一级视频| 性色一区二区| 久久久久久久成人| 精品无码一区二区三区蜜臀| 大奶一区二区三区| 日韩亚洲欧美在线观看| 亚洲第一福利一区| 好吊色欧美一区二区三区视频| 国产主播在线播放| 综合久久一区| 久久久黄色av| 强制高潮抽搐sm调教高h| 国产精品亚洲二区| 精品视频中文字幕| 99久久免费看精品国产一区| 我要色综合中文字幕| 欧美三级免费观看| 久久国产精品视频在线观看| 亚洲精品天堂| 亚洲精品老司机| 欧美福利精品| 精品欧美一区二区精品少妇| 麻豆成人久久精品二区三区红| 欧美精品videosex极品1| 91激情视频在线观看| 亚洲天堂中文字幕在线观看| 日韩视频国产视频| 国产精品99久久久精品无码| 日韩中文字幕在线一区| 欧美va日韩va| 88av在线播放| 欧美一性一交| 欧美一级二级三级蜜桃| 99色精品视频| 日韩三区免费| 欧美日韩亚州综合| 红桃视频 国产| 警花av一区二区三区| 91福利视频在线| 黄色在线视频网| 在线男人天堂| 欧美在线高清视频| 在线观看免费av网址| crdy在线观看欧美| 精品福利一二区| 亚洲一区精品视频在线观看| 亚洲综合视频| 精品国产乱码久久| 91精品人妻一区二区三区蜜桃欧美 | 欧美一区二区三区成人久久片| 国产又粗又黄又爽| 国产成人av影院| 精品久久久久久一区二区里番| 国产丰满美女做爰| 成人国产精品免费观看动漫| 美女被啪啪一区二区| avav免费在线观看| 亚洲人成网站影音先锋播放| 亚洲精品高清国产一线久久| 国产激情在线视频| 国产精品福利一区| 日韩精品久久久| 在线看福利影| 日韩欧美成人精品| 能在线观看的av| 日韩成人综合网站| 日韩高清av一区二区三区| 丁香花五月婷婷| 狠狠干综合网| 国产精品视频自在线| 亚洲第九十九页| 久久久精品人体av艺术| 400部精品国偷自产在线观看| 黄视频在线观看网站| 亚洲v精品v日韩v欧美v专区| 69久久久久久| 蜜桃久久久久| 日韩视频精品在线| 毛片基地在线观看| 久久久精品午夜少妇| 91网站在线免费观看| 日本护士...精品国| 一区二区三区中文字幕电影 | 欧美一区二区黄片| 成人丝袜视频网| 色婷婷精品国产一区二区三区| 超碰免费97在线观看| 国产精品免费aⅴ片在线观看| 正在播放国产精品| 色婷婷综合久久久中字幕精品久久| 婷婷激情在线| 国产精品污网站| 在线观看一区二区三区三州| 悠悠资源网亚洲青| 精品国产一区二区三区久久影院| 欲求不满的岳中文字幕| 欧美一区91| 国产日韩中文在线| 岛国视频免费在线观看| 懂色av中文一区二区三区天美| 日韩黄色片视频| 精品福利一区| 久久久久久久999精品视频| 国产乱淫a∨片免费观看| 亚洲国产精品高清| 美女网站免费观看视频| 精品影片在线观看的网站| 午夜精品久久久久久久久久久久久 | 欧美熟女一区二区| 2017欧美狠狠色| 霍思燕三级露全乳照| 精品一区二区三区中文字幕在线| 国产视频精品久久久| 国产精品无码无卡无需播放器| 亚洲精品国产首次亮相| 91精品国产乱码久久久久久蜜臀| 久久久999久久久| 久久九九影视网| 男女av免费观看| 九色精品91| 日本久久久久亚洲中字幕| 性高潮久久久久久久久久| 亚洲国产乱码最新视频| 亚洲一区和二区| 亚洲精品裸体| 久久久久久欧美精品色一二三四| 欧美r级在线| 91 com成人网| 天堂久久精品忘忧草| 日韩在线a电影| 一区二区三区四区免费视频| 亚洲欧美在线综合| 久久成人精品一区二区三区| 中文字幕亚洲乱码熟女1区2区| 国产精品一区二区在线观看不卡 | 日韩一区欧美小说| 播放灌醉水嫩大学生国内精品| **日韩最新| 久久的精品视频| 亚洲精品一级片| 精品成人久久av| 能免费看av的网站| 蜜臂av日日欢夜夜爽一区| 亚洲一区尤物| 成人看片黄a免费看视频| 97视频免费看| 成人全视频高清免费观看| 欧美日本在线播放| 久草视频免费在线播放| 26uuu亚洲| 激情视频免费网站| 国产精品大片免费观看| 欧美欧美一区二区| 国产精品第一| 欧美激情一区二区三级高清视频 | 麻豆高清免费国产一区| 区一区二区三区中文字幕| 成人在线视频免费看| 久久视频免费在线播放| 国产又黄又猛又爽| 亚洲国产日韩在线一区模特| 一级片视频免费看| 久久精品123| 中文字幕在线乱| 欧美三级电影网址| 久久久久久久久久国产| 国产午夜在线视频| 精品久久人人做人人爰| 9i精品福利一区二区三区| 亚洲视频在线一区观看| free性中国hd国语露脸| 激情欧美一区二区| 免费黄色福利视频| 免费视频一区三区| 97超级碰碰| 最新欧美电影| 午夜精品在线视频| 麻豆视频在线免费观看| 亚洲欧美国产精品va在线观看| 狠狠人妻久久久久久| 亚洲人成7777| 日韩精品国产一区| 日本欧美一区二区三区| 久久久久久久久久网| 中文字幕无线码一区| 久久精品一区| 日本a级片在线观看| 欧美系列电影免费观看| 成人永久免费| 婷婷久久免费视频| 国产精品成人播放| 少妇视频在线观看| 欧美精品videos| av网站网址在线观看| 最新69国产成人精品视频免费| 91成人在线免费| 色欧美日韩亚洲| 欧美手机在线观看| 国产欧美一区二区三区网站| 亚洲第九十七页| 成人精品视频网站| 黑人巨大猛交丰满少妇| 久草精品在线观看| 福利片一区二区三区| 麻豆精品国产91久久久久久| 日本在线观看免费视频| 欧美精品导航| 在线观看成人免费| 亚洲国产一区二区在线观看| 亚洲午夜激情| 日韩中字在线| 亚洲日本精品| 国产精品国产一区| 午夜啪啪免费视频| 99视频精品全国免费| 亚洲在线欧美| 欧美电影《睫毛膏》| 99re99热| 天天综合一区| 日韩国产小视频| 国产精品videosex极品| 亚洲理论电影在线观看| 日韩理论电影| 综合一区中文字幕| 欧美1区视频| 成年人网站国产| 忘忧草精品久久久久久久高清| 国新精品乱码一区二区三区18| 国产成人精选| 96pao国产成视频永久免费| 美女国产精品久久久| 99久久99久久精品国产片| jazzjazz国产精品久久| 国内外成人免费视频| 狠狠色丁香婷婷综合影院| 午夜欧美性电影| 一区二区三区午夜探花| 国产乱淫av片杨贵妃| 香蕉精品999视频一区二区| www.日日操| 久久久久久穴| 国产免费中文字幕| 成人激情免费网站| 能免费看av的网站| 亚洲视频 欧洲视频| 中文字幕欧美激情极品| 亚洲欧洲成人精品av97| 亚洲熟妇无码av| 国产精品国模大尺度视频| 久久精品一级片| 色综合天天综合给合国产| 久久久999久久久| 欧美中文字幕不卡| 精品人妻午夜一区二区三区四区| 3d动漫精品啪啪一区二区竹菊| 在线视频免费观看一区| 日韩午夜在线观看视频| 爽爽视频在线观看| 日韩色av导航| 在线毛片观看| 91九色蝌蚪成人| 国产欧美日韩一区二区三区四区 | 蜜桃精品噜噜噜成人av| 亚洲最大免费| 91精品蜜臀一区二区三区在线| 中文字幕欧美人与畜| 久久久久久久久99精品大| 欧美激情视频免费看| 免费欧美日韩国产三级电影| 亚洲精品国产成人av在线| 日本一区二区成人在线| 国产精品9191| 7777精品伊人久久久大香线蕉的| 国产孕妇孕交大片孕| 日韩精品高清在线| 国产区av在线| 海角国产乱辈乱精品视频| 黄色欧美视频| 欧美午夜视频在线| 欧美日本中文| 一本一道久久a久久综合蜜桃| 韩国一区二区三区| 2025中文字幕| 国产精品久久久久久户外露出| 精品自拍偷拍视频| 在线视频中文字幕一区二区| 黄色av小说在线观看| 日韩在线视频二区| 经典三级一区二区| 成人啪啪免费看| 欧美日韩在线二区| 人妻熟女一二三区夜夜爱| 成人国产在线观看| 国产精品 欧美激情| 欧美精品v国产精品v日韩精品| 性少妇videosexfreexxx片| 中文日韩在线视频| 浪潮色综合久久天堂| 久久资源亚洲| 日韩视频精品在线观看| 国产污在线观看| 亚洲影视在线观看| 99在线观看免费| 久久综合伊人77777| 色狠狠一区二区三区| 亚洲精品一区二区三| 免费在线观看一区二区三区| 国产av自拍一区| 色欧美乱欧美15图片| 国产成人精品a视频| 日韩精品在线播放| a天堂资源在线| 国内精品久久久久久久果冻传媒| 99国产**精品****| 狠狠操狠狠干视频| xf在线a精品一区二区视频网站| 久久久久久久久久97| 午夜不卡在线视频| 色窝窝无码一区二区三区| 色多多国产成人永久免费网站| 成人免费高清观看| 国产99在线免费| 在线观看不卡| 色噜噜在线观看| 一本色道久久综合亚洲精品按摩| 国产激情久久久久久熟女老人av| 亚洲视频电影图片偷拍一区| 新片速递亚洲合集欧美合集| 日韩欧美精品一区二区| 老司机午夜精品| 欧美在线视频第一页| 日韩午夜激情电影| 9999在线视频| 欧美成人蜜桃| 六月丁香婷婷色狠狠久久| 极品魔鬼身材女神啪啪精品| 欧美成人精品1314www| 婷婷免费在线视频| 91精品婷婷国产综合久久蝌蚪| 国产精品精品| 五月天丁香社区| 欧美性xxxx极品hd欧美风情| av免费在线一区二区三区| 亚洲一区国产精品| 国产视频一区三区| gv天堂gv无码男同在线观看| 欧美一级视频精品观看| 17videosex性欧美| 色视频一区二区三区| 亚洲综合欧美| 黄色精品视频在线观看| 亚洲丁香婷深爱综合| 国产激情视频在线看| 色99中文字幕| 国产黄人亚洲片| 麻豆91精品91久久久| 欧美一区二区免费观在线| 蜜桃视频m3u8在线观看| 国产一区二区三区黄| 奇米一区二区三区av| 久久免费小视频| 中文字幕国产亚洲| 成人三级av在线| 久久99爱视频| 偷拍一区二区三区| 久草资源在线| 欧美日韩精品免费观看| 国产精品乡下勾搭老头1| 免费观看日批视频| 中文字幕久久久| 高清一区二区三区|