精品欧美一区二区三区在线观看 _久久久久国色av免费观看性色_国产精品久久在线观看_亚洲第一综合网站_91精品又粗又猛又爽_小泽玛利亚一区二区免费_91亚洲精品国偷拍自产在线观看 _久久精品视频在线播放_美女精品久久久_欧美日韩国产成人在线

基于DeepSeek推理的文本聚類

譯文 精選
人工智能
本文將探索大型語言模型(LLM)中的推理領域,并介紹DeepSeek這款優秀工具,它能幫助人們解釋推論結果,構建能讓終端用戶更加信賴的機器學習系統。

譯者 | 李睿

審校 | 重樓

開發人員需要開發和理解一種新的文本聚類方法,并使用DeepSeek推理模型解釋推理結果。

本文將探索大型語言模型(LLM)中的推理領域,并介紹DeepSeek這款優秀工具,它能幫助人們解釋推論結果,構建能讓終端用戶更加信賴的機器學習系統。

在默認情況下,機器學習模型是一種黑盒,不會為決策提供開箱即用的解釋(XAI)。本文介紹如何使用DeepSeek模型,并嘗試將解釋或推理能力添加到機器學習世界中。

方法

首先構建自定義嵌入和嵌入函數來創建向量數據存儲,并使用DeepSeek模型來執行推理。

以下是展示整個流程的一個簡單的流程圖。

數據

(1)選擇一個新聞文章數據集來識別新文章的類別。該數據集可在Kaggle網站上下載。

(2)從數據集中,使用short_description進行向量嵌入,并使用類別特征為每篇文章分配適當的標簽。

(3)數據集相當干凈,不需要對其進行預處理。

(4)使用pandas庫加載數據集,并使用scikit-learn將其拆分為訓練和測試數據集。

1 import pandas as pd
2
3 df = pd.read_json('./News_Category_Dataset_v3.json',lines=True)
4
5 from sklearn.model_selection import train_test_split
6 # Separate features (X) and target (y)
7 X = df.drop('category', axis=1)
8 y = df['category']
9
10 # Split data into training and testing sets
11 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
12
13 train_df = pd.concat([X_train, y_train], axis=1)
14 test_df = pd.concat([X_test, y_test], axis=1)

生成文本嵌入

使用以下庫進行文本嵌入:

  • langchain—用于創建示例提示和語義相似性選擇器。
  • langchain_chroma—用于創建嵌入并將其存儲在數據存儲中。
1 from chromadb import Documents, EmbeddingFunction, Embeddings
2
3 from langchain_chroma import Chroma
4 from langchain_core.example_selectors import SemanticSimilarityExampleSelector
5 from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

接下來,將構建自定義嵌入和嵌入函數。這些自定義函數將允許查詢部署在本地或遠程實例上的模型。

閱讀器可以為部署在遠程實例上的實例合并必要的安全機制(HTTPS、數據加密等),并調用REST端點來檢索模型嵌入。

1 class MyEmbeddings(Embeddings):
2
3 def __init__(self):
4 # Server address and port (replace with your actual values)
5 self.url = ""
6 # Request headers
7 self.headers = {
8 "Content-Type": "application/json"
9 }
10
11 self.data = {
12 # Use any text embedding model of your choice
13 "model": "text-embedding-nomic-embed-text-v1.5",
14 "input": None,
15 "encoding_format": "float"
16 }
17
18 def embed_documents(self, texts):
19 embeddings = []
20 for text in texts:
21 embeddings.append(self.embed_query(text))
22 return embeddings
23
24 def embed_query(self, input):
25 self.data['input'] = input
26 with requests.post(self.url, headers=self.headers, data=json.dumps(self.data)) as response:
27 res = response.text
28 yaml_object = yaml.safe_load(res)
29 embeddings = yaml_object['data'][0]['embedding']
30 return embeddings
31
32
33
34 class MyEmbeddingFunction(EmbeddingFunction):
35
36 def __call__(self, input: Documents) -> Embeddings:
37 return MyEmbeddings()

將定義一個簡單的函數,它將為新聞文章創建一個語義相似性選擇器。選擇器將用于使用訓練數據集創建向量嵌入。

1 def create_semantic_similarity_selector(train_df):
2
3 example_prompt = PromptTemplate(
4 input_variables=["input", "output"],
5 template="Input: {input}\nOutput: {output}",
6 )
7
8 # Examples of a pretend task of creating antonyms.
9 examples = []
10
11 for row in train_df.iterrows():
12 example = {}
13 example['input'] = row[1]['short_description']
14 example['output'] = row[1]['category']
15 examples.append(example)
16
17 semantic_similarity_selector = SemanticSimilarityExampleSelector.from_examples(
18 # The list of examples available to select from.
19 examples,
20 # The embedding class used to produce embeddings which are used to measure semantic similarity.
21 MyEmbeddings(),
22 # The VectorStore class that is used to store the embeddings and do a similarity search over.
23 Chroma,
24 # The number of examples to produce.
25 k=1,
26 ) 
27
28 return semantic_similarity_selector

調用上面的函數來生成新聞文章的嵌入。需要注意的是,訓練過程可能很耗時,可以將其并行化以使其更快運行。

1 semantic_similarity_selector = create_semantic_similarity_selector(train_df)

色度向量數據存儲用于存儲各種新聞文章及其相關標簽的向量表示。然后使用數據存儲中的嵌入來執行與測試數據集中文章的語義相似性,并檢查該方法的準確性。

將調用DeepSeek REST端點,并將從語義相似性選擇器接收到的響應和實際結果傳遞給測試數據集。隨后,將創建一個包含DeepSeek模型進行推理所需信息的上下文。

1 def explain_model_result(text, model_answer, actual_answer):
2 # REST end point for deepseek model.
3 url = ""
4 
5 # Request headers
6 headers = {
7 "Content-Type": "application/json"
8 }
9
10 promptJson = {
11 "question": 'Using the text, can you explain why the model answer and actual answer match or do not match ?',
12 "model_answer": model_answer,
13 "actual_answer": actual_answer,
14 "context": text,
15 }
16 prompt = json.dumps(promptJson)
17
18 # Request data (replace with your prompt)
19 data = {
20 "messages": [{"role": "user", "content": prompt}],
21 "temperature": 0.7,
22 "stream": True
23 }
24 captured_explanation = ""
25 with requests.post(url, headers=headers, data=json.dumps(data), stream=True) as response:
26 if response.status_code == 200:
27 for chunk in response.iter_content(chunk_size=None):
28 if chunk:
29 # Attempt to decode the chunk as UTF-8
30 decoded_chunk = chunk.decode('utf-8') 
31 # Process the chunk as a json or yaml to extract the explanation and concat it with captured_explanation object.
32 captured_explanation += yaml.safe_load(decoded_chunk)['data']['choices'][0]['delta']['content']
33 else:
34 print(f"Request failed with status code {response.status_code}")
35
36 return captured_explanation

以下解析測試數據集,并從DeepSeek模型中獲取解釋。

1 results_df = pd.DataFrame()
2 results_df['input'] = None
3 results_df['model_answer'] = None
4 results_df['actual_answer'] = None
5 results_df['explanation'] = None
6 for row in test_df.iterrows():
7 example = {}
8 example['input'] = row[1]['short_description']
9 model_result_category = semantic_similarity_selector.select_examples(example)
10 example['explanation'] = explain_model_result(example['input'],model_result_category[0]['output'],row[1]['category'])
11 example['model_answer'] = model_result_category[0]['output']
12 example['input'] = row[1]['category']
13 results_df.loc[len(results_df)] = example

結果

以下將分享測試數據集中一些場景的結果。

第一個例子是當從語義相似性中捕獲的答案與測試數據集中的實際答案不匹配時。這種洞察力使人們能夠了解模型在做出預測時是否合理。think標簽提供了DeepSeek模型的初始思維過程,以理解問題陳述,然后為最終用戶整理答案。

在第一個例子中,DeepSeek可以解釋為什么模型得到了錯誤的答案。該模型只考慮句子中的旅游(TRAVEL)方面,而沒有考慮娛樂(ENTERTAINMENT)方面。這意味著嵌入模型需要更多的娛樂示例進行訓練。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "TRAVEL" and the actual answer is "ENTERTAINMENT." The context given is about going to Central Park and the Delacorte Theater to see Shakespeare under the night sky, with rain expected.
4
5 First, I need to understand what each term refers to. TRAVEL relates to visiting places, moving around, or tourism in general. ENTERTAINMENT is more about enjoyable activities, like theater, concerts, movies, etc., that provide pleasure.
6
7 Looking at the context: the person went to Central Park, which is a place they traveled to. Then they went to the Delacorte Theater for a Shakespeare performance. So, the main activities are both TRAVEL and ENTERTAINMENT because they're going out, seeing a play.
8
9 But why would there be a mismatch between model and actual answers? Maybe the model didn't consider that travel can also include attending theater or other performances as part of the entertainment aspect. So the actual answer is broader, including both aspects, while the model focuses only on TRAVEL.
10
11 Alternatively, perhaps the context doesn't emphasize one over the other. The key points are moving to a place (TRAVEL) and attending an event for enjoyment (ENTERTAINMENT). Depending on the focus, either could be considered the main answer, but typically, when someone goes somewhere to attend an event, both travel and entertainment elements come into play.
12
13 So, the model answer might have only picked TRAVEL, not considering ENTERTAINMENT. The actual answer includes both aspects, hence the mismatch.
14
15 </think>
16
17 The discrepancy between the model answer "TRAVEL" and the actual answer "ENTERTAINMENT" arises from the context provided. While travel is indeed part of the narrative—visiting Central Park—the primary focus is on attending a theater performance, which falls under entertainment. The actual answer captures both elements: moving to a place (travel) and engaging in an enjoyable event (entertainment). Thus, the model may have overlooked the entertainment aspect, considering only travel, whereas the actual response encompasses both activities.
18
19 **Answer:** 
20
21
21 The model answer "TRAVEL" focuses on visiting places, while the actual answer "ENTERTAINMENT" includes attending a theater performance. The context highlights both elements, leading to the mismatch in answers.

需要考慮模型的答案和實際答案不匹配的場景。然而,該模型在預測方面是合理的。

在第二個例子中,發生在法國的持械搶劫是一種犯罪(CRIME),因此將用戶文章標記為犯罪的模型不一定是錯誤的。DeepSeek的推理能夠為結果提供合理的理由。

1 <think>
2
3 Okay, so I'm trying to figure out why the model answer is "CRIME" and the actual answer is "WORLD NEWS" given the context: "French police recovered the merchandise stolen in an armed robbery on Wednesday." 
4
5 First, I need to understand what each part of this question is asking. The user wants me to explain why these two answers match or don't match based on the provided text. So, maybe I should start by analyzing the context and seeing how it relates to both CRIME and WORLD NEWS.
6
7 Looking at the context: It's about French police recovering stolen merchandise from an armed robbery. An armed robbery is definitely a crime, so that makes sense why "CRIME" is an answer. The model answer being CRIME aligns with the event described because it's a criminal act—a robbery.
8
9 Now, why is WORLD NEWS also an answer? Well, if I think about news in general, events like this are newsworthy. So perhaps the actual answer is considering that this incident is part of world news because it involves police action and theft, which can be significant enough to be reported internationally.
10
11 But wait, does the context specify whether it's considered world news or not? It just mentions French police recovering stolen goods in an armed robbery on Wednesday. Without more details about the scale or international implications, I'm not sure if it's explicitly world news. Maybe WORLD NEWS is a broader category that includes such events as part of their reporting.
12
13 So, why do they match and why don't they? They both are relevant because CRIME is directly related to the event, while WORLD NEWS is considering the newsworthiness of the event. But perhaps the model answer is more focused on the specific event being a crime, whereas WORLD NEWS is taking a broader view of news events.
14
15 I'm also thinking about how each answer approaches the context differently. The model answer is zeroing in on the type of event (crime), while the actual answer is considering it as a newsworthy event that might be reported in world news sections or channels.
16
17 So, to sum up, both answers are relevant but approach the context from different angles—Crime specifically relates to the event's nature, whereas WORLD NEWS broadens it into the realm of news reporting.
18
19 </think>
20
21 The model answer "CRIME" and the actual answer "WORLD NEWS" both address the provided context, but they do so from different perspectives. 
22
23 **CRIME**: The context explicitly describes an armed robbery, which is a criminal act. Therefore, "CRIME" directly relates to the nature of the event.
24
25 **WORLD NEWS**: While the event is indeed newsworthy, the term "WORLD NEWS" broadens the scope beyond the specific details, considering it as part of international or general news reporting.
26
27 In essence, both answers are relevant but focus on different aspects: "CRIME" highlights the event's nature as a criminal act, while "WORLD NEWS" recognizes its potential newsworthiness.

當模型和實際答案匹配時,將考慮推理。

匹配結果背后的推理增強了人們的信任,并建立了對模型預測的信心。

1 <think>
2
3 Okay, so I'm trying to understand why the model answer and the actual answer both say "MEDIA" when explaining the context. The question is asking me to explain whether they match or not based on the given text.
4
5 First, let me look at the context provided: "The newsroom is awash with fears about the casino mogul's intentions after his refusal to admit ownership." This sentence mentions a casino mogul and their refusal to own up to something. That refusal is causing fear in the newsroom regarding their intentions.
6
7 Now, looking at both the model answer and the actual answer, they both are "MEDIA". I think this might be an abbreviation or shorthand for media-related reasons. The context talks about the newsroom, which is a place associated with media organizations or journalists. So, when there's fear about someone's intentions, especially related to ownership, it makes sense that the media would be concerned and involved.
8
9 Wait, but why specifically does it say "MEDIA"? Maybe it's short for something else or maybe it's just a coincidence. However, given that the context is in a newsroom setting, it's likely referring to media-related issues.
10
11 Let me break it down: The casino mogul refusing ownership could imply some kind of hidden agenda or control. Since this is in a newsroom, which deals with reporting and information, the refusal might be seen as trying to hide something. This fear could lead to media coverage or reporting on it, hence the mention of MEDIA.
12
13 So, putting it together, both answers refer to the involvement or concern of media outlets regarding the casino mogul's actions. Therefore, they match because the context clearly ties into a media-related situation.
14
15 </think>
16
17 The model answer and actual answer both state "MEDIA" because the context provided refers to a newsroom setting, where concerns about a casino mogul's intentions are likely related to media involvement or reporting. The refusal to admit ownership sparks fear, suggesting possible media coverage or concerns, thus aligning both answers with the media-related context. 
18
19 **Answer:** Both answers match because the context involves a newsroom, indicating media-related concerns over a casino mogul's intentions.

結論

推理的力量使用戶對模型的功能有了寶貴的了解,并凸顯了其優勢與不足。它增強了對系統的理解,并提供了改進系統的路徑。

設想一個只提供推理決策而不提供任何解釋的模型,那么用戶將永遠無法理解為什么模型會提供這些決策,并且可能難以對其產生信心。

原文標題:Text Clustering With Deepseek Reasoning,作者:Kalpan Dharamshi

責任編輯:姜華 來源: 51CTO內容精選
相關推薦

2025-02-27 08:00:00

DeepSeek大模型人工智能

2023-04-02 14:16:45

凸集算法集合

2023-05-10 08:00:00

聚類分析數據分析聚類算法

2024-12-20 16:00:00

Python文本分類聚類

2025-04-30 09:19:32

2025-05-22 10:06:49

2022-11-10 15:58:41

模型訓練

2023-06-30 17:59:27

Ray離線推理

2025-03-19 09:38:58

2025-03-07 09:57:01

2017-08-01 16:44:33

機器學習算法文本挖掘

2025-02-19 07:59:06

2025-05-26 04:00:00

2023-03-01 07:41:16

廣告創意數據稀疏算法

2025-02-28 07:11:20

2025-02-08 09:44:11

DeepSeekAI模型

2014-07-02 10:34:08

聚類算法算法

2025-02-13 08:51:23

DeepSeek大模型

2025-02-24 10:07:04

點贊
收藏

51CTO技術棧公眾號

美国成人毛片| 亚洲麻豆一区二区三区| 色综合888| 免费成人在线观看视频| 久久国产精品免费视频| 亚洲中文字幕一区| 久久影视精品| 午夜精品福利一区二区三区蜜桃| 欧美日韩最好看的视频| 999免费视频| 美女诱惑一区| 欧美情侣性视频| 久久久久亚洲av无码a片| 国产精品一区二区三区www| 天天综合网天天综合色| 中文一区一区三区免费| 天堂中文资源在线观看| 精品一区二区免费| 欧美伊久线香蕉线新在线| 少妇视频一区二区| 精品在线播放| 精品国产a毛片| 成人黄色一级大片| 欧美magnet| 亚洲成人综合视频| 国产成人三级视频| 成年网站在线| 久久久综合精品| 高清av免费一区中文字幕| 中文文字幕一区二区三三| 亚洲精品韩国| 久久久久久久久综合| 国产极品美女在线| 日韩一区欧美| 国产一区二区三区在线播放免费观看 | 成人在线观看免费网站| 久久精品欧美日韩| 久久久免费看| 头脑特工队2免费完整版在线观看 头脑特工队2在线播放 | 欧美xxxx综合视频| 国产精品久久国产精麻豆96堂| 日韩欧美影院| 亚洲激情视频在线观看| 日韩成人av影院| 亚洲网一区二区三区| 91麻豆精品国产| 日本黄大片一区二区三区| free欧美| 在线视频一区二区三区| 日韩av在线综合| 色在线视频观看| 岛国av一区二区| 久在线观看视频| 亚洲欧洲高清| 欧美日韩中文字幕综合视频| 玩弄中年熟妇正在播放| 密臀av在线播放| 欧美视频不卡中文| 日日碰狠狠丁香久燥| 韩国久久久久久| 欧美伊人久久大香线蕉综合69| 白嫩少妇丰满一区二区| 日韩和的一区二在线| 欧洲亚洲精品在线| 潘金莲激情呻吟欲求不满视频| 国产香蕉久久| 91精品国产综合久久久久| 中文字幕在线视频精品| 日韩精品一区二区三区中文在线| 日韩你懂的在线播放| 国产一精品一aⅴ一免费| 精品国产18久久久久久洗澡| 日韩精品在线免费| 谁有免费的黄色网址| 国产精品毛片久久| 久久久午夜视频| 激情视频网站在线观看| 久久精品国产一区二区| 91国产在线免费观看| 人妻无码一区二区三区久久99 | 波多野结衣欲乱| 91综合久久一区二区| 欧美成人精品在线| 国产精品午夜影院| 老司机午夜精品| 国产精品久久久久久久天堂第1集| 深夜福利视频在线观看| 99国产精品久| 亚洲亚洲精品三区日韩精品在线视频| 26uuu亚洲电影在线观看| 午夜日韩在线电影| 亚洲精品自拍网| 精品欠久久久中文字幕加勒比| 亚洲色图五月天| 天堂av网手机版| 国产精品99一区二区三| 久久91亚洲精品中文字幕| 久久精品视频1| 久久国产精品区| 久久国产精品99久久久久久丝袜 | 久久久久久久久国产精品| 婷婷色中文字幕| 亚洲精品色图| 国产精品视频在线播放| 亚洲精选一区二区三区| 欧美国产精品劲爆| 玖玖精品在线视频| 欧美国产日韩电影| 亚洲精品第一国产综合精品| 任我爽在线视频| 老妇喷水一区二区三区| 超碰精品在线观看| 亚洲精品在线电影| 情侣偷拍对白清晰饥渴难耐| 亚洲久久一区二区| 91九色精品视频| 成人好色电影| 舔着乳尖日韩一区| 91精品人妻一区二区三区蜜桃2 | 国产成人免费视频| 亚洲日本japanese丝袜| 丝袜诱惑一区二区| 精品国产精品一区二区夜夜嗨| 亚洲人做受高潮| 日韩国产欧美三级| 欧美污视频久久久| 僵尸再翻生在线观看| 精品日韩一区二区| 精品一区在线观看视频| 久久福利资源站| 欧美一区二区在线视频观看| 91美女主播在线视频| 日韩欧美区一区二| 成人在线观看高清| 加勒比av一区二区| 在线免费观看成人| 亚洲国产aⅴ精品一区二区三区| 亚洲性视频网站| 日批视频免费在线观看| 99久久伊人网影院| 国产精品秘入口18禁麻豆免会员| 成人h动漫免费观看网站| 色综合久久精品亚洲国产| 国产美女主播在线观看| 综合久久久久久| 亚洲一区二区偷拍| 牛夜精品久久久久久久99黑人| 国产综合色香蕉精品| 91社区在线观看播放| 欧美丝袜第三区| 日韩av网站在线播放| 激情综合色播激情啊| 四虎永久免费网站| 一区二区日韩| 97香蕉久久超级碰碰高清版| 人妻无码一区二区三区久久99| 亚洲18女电影在线观看| 久久国产精品无码一级毛片| 国产免费成人| 日韩福利在线| 欧美日韩女优| 久久国产精品网站| 开心激情综合网| 日韩欧美综合在线视频| www久久久久久久| 九九**精品视频免费播放| 韩国黄色一级大片| 国产欧美啪啪| 国产成人一区二区三区小说| 99re在线视频| 日韩一级高清毛片| 久久精品视频9| 久久久综合视频| 激情在线观看视频| 亚洲精品1区| 日本一区二区三区视频在线观看 | 西西裸体人体做爰大胆久久久| 欧美激情导航| 成人黄色91| 91精品成人久久| 日韩免费啪啪| 亚洲电影在线观看| 99re这里只有精品在线| 亚洲视频一二区| 50一60岁老妇女毛片| 日韩av成人高清| 国产精品三级一区二区| 亚洲性视频大全| 成人在线观看视频网站| 免费看男女www网站入口在线| 在线视频日本亚洲性| 国产成人av免费看| 91精品福利在线| 黄色一级视频在线观看| 久久久国产一区二区三区四区小说| 国产美女18xxxx免费视频| 99国产精品久久久久久久 | 黄色网页在线看| 日韩成人激情在线| 手机看片福利日韩| av在线电影播放| 精品欧美一区二区久久| 免费黄色小视频在线观看| 亚洲激情五月婷婷| 91在线无精精品白丝| 国产ts人妖一区二区| 午夜免费高清视频| 亚洲一区二区三区四区五区午夜| 超碰在线免费观看97| 亚洲影院天堂中文av色| 国产精品美女诱惑| 一区二区三区日本视频| 国产不卡一区二区在线播放| 国产探花在线观看| 久热精品视频在线| 岛国视频免费在线观看| 亚洲护士老师的毛茸茸最新章节| 国产又粗又猛视频| 一本久久a久久精品亚洲| 国产一级生活片| 亚洲欧洲精品天堂一级 | www.av网站| 欧美日韩另类一区| 国产情侣免费视频| 欧美性猛交xxxx久久久| 日韩免费一二三区| 一区二区激情小说| 欧美久久久久久久久久久| 国产一区二区在线电影| 国产嫩草在线观看| 免费日韩av片| 波多野结衣与黑人| 视频在线不卡免费观看| 欧美精品一区在线| 精品综合久久88少妇激情| 91精品中文在线| 深夜在线视频| 久久久久久久久亚洲| 欧美野外wwwxxx| 日韩三级影视基地| 国产二区视频在线观看| 一本一本久久a久久精品综合小说 一本一本久久a久久精品牛牛影视 | 日韩在线一卡二卡| 欧美先锋资源| 日韩三级av在线播放| 国产免费a视频| 在线看日本不卡| 中文字幕黄色av| 欧美日韩精品专区| 国产理论视频在线观看| 69堂精品视频| 亚洲精品第五页| 亚洲国产精品久久91精品| 亚洲精品18在线观看| 精品国产一区二区三区忘忧草| 黑人操亚洲女人| 亚洲国产成人在线播放| 五月婷婷深深爱| 亚洲美女性生活视频| 超碰国产在线| 久久亚洲精品网站| 国精产品一区一区三区mba下载| 久久久久久91香蕉国产| 悠悠资源网亚洲青| 国产精品美女免费视频| 福利一区三区| 国产精品一区二区欧美| 在线一级成人| 中文字幕一区二区三区有限公司 | 97久久精品国产| 怡红院成人在线| 国产有码一区二区| 国产精品自拍第一页| 午夜国产欧美理论在线播放| 2021狠狠干| 亚洲深夜福利| 一道本在线免费视频| 国产91精品久久久久久久网曝门| 亚洲中文字幕一区| 国产精品初高中害羞小美女文| 欧美日韩精品在线观看视频| 五月综合激情网| 伊人久久国产精品| 精品乱码亚洲一区二区不卡| 日本视频在线观看一区二区三区 | 国产亚洲欧美一区二区三区| 自拍欧美一区| 路边理发店露脸熟妇泻火| 国产欧美日本| 欧美精品 - 色网| 91玉足脚交白嫩脚丫在线播放| 天堂网av2018| 黄色成人在线播放| 国产免费av观看| 亚洲人成电影网站色…| 手机在线免费av| 国产精品va在线| av成人资源| 亚洲区一区二区三区| 亚洲三级电影在线观看| 182午夜在线观看| 91麻豆国产福利精品| 99视频只有精品| 欧美日韩中字一区| 欧洲成人av| 久久久久久国产精品久久| 另类一区二区| 日本在线高清视频一区| 亚洲国产第一| 自拍一级黄色片| 国产精品久久久久久久久果冻传媒 | 99国产在线观看| 日韩欧美国产精品综合嫩v| 亚洲熟妇av一区二区三区漫画| 国产一区二区三区不卡在线观看| 日本乱子伦xxxx| 日韩欧美极品在线观看| 精品人妻一区二区三区蜜桃| 色99之美女主播在线视频| 欧洲av一区二区| 欧美亚洲另类在线一区二区三区| 亚洲日本成人| 国模无码视频一区| 一区二区日韩电影| 99热这里只有精品3| 日韩亚洲第一页| 99久久综合国产精品二区| 欧美激情专区| 亚洲在线观看| 美国黄色a级片| 欧美午夜电影在线| 午夜视频福利在线| 国内精品视频久久| 黄色免费大全亚洲| 欧美视频免费看欧美视频| 粉嫩av亚洲一区二区图片| 中文字幕av久久爽av| 91精品麻豆日日躁夜夜躁| 免费大片在线观看www| 国产精品一香蕉国产线看观看 | 日韩久久久久久久久久久久| 激情五月激情综合网| 日本免费网站视频| 欧美日韩视频在线一区二区| 亚乱亚乱亚洲乱妇| 成人www视频在线观看| 久久国产精品亚洲人一区二区三区 | av电影在线观看完整版一区二区| 精品在线视频观看| 亚洲国产成人爱av在线播放| gogo高清在线播放免费| 精品免费国产| 久久久久久久高潮| 国产精品国产三级国产专业不| 欧洲色大大久久| 黄色网址免费在线观看| 国产精品二区在线| 亚洲免费影院| 娇妻被老王脔到高潮失禁视频| 欧洲精品一区二区| 国产黄大片在线观看画质优化| 成人av资源网| 天堂蜜桃一区二区三区| 自拍偷拍你懂的| 欧美xxx久久| 亚洲淫成人影院| 亚洲一区三区电影在线观看| 国产伦精品一区二区三区免费迷| 欧美性猛交xxxxx少妇| 亚洲精品ady| 97精品国产综合久久久动漫日韩| 在线视频不卡一区二区| 风间由美性色一区二区三区| 午夜精品久久久久久久久久久久久蜜桃 | 日本wwwxx| 一本久久a久久免费精品不卡| 在线观看的av| 国产久一道中文一区| 日本视频一区二区三区| 校园春色 亚洲| 亚洲欧美日韩网| 警花av一区二区三区| 日本福利视频在线| 中文字幕亚洲成人| 亚洲欧洲精品视频| 成人免费视频97| 国产精品永久| 欧美黄色aaa| 国产亚洲精品久久久久久牛牛| 色播一区二区| 午夜免费一区二区| 亚洲国产精品一区二区久久| 超碰在线影院| 久久精品国产精品国产精品污| 精品一区二区三区免费视频| 久久国产视频播放| 久久99国产精品自在自在app| 欧美激情在线免费| 四虎成人免费视频| 在线不卡中文字幕|