世界模型==VQA?機器人不用想象畫面,預(yù)測語義就夠了

眾所周知,世界模型是一種讓 AI「想象未來」的學(xué)習(xí)方法。它可以從大量數(shù)據(jù)中學(xué)習(xí)世界的運行規(guī)律,然后根據(jù)當(dāng)前狀態(tài)預(yù)測未來可能發(fā)生的事情。這種能力非常關(guān)鍵,因為如果 AI 能對未來做出合理預(yù)測,就能提前規(guī)劃出更聰明、更穩(wěn)健的行動策略。
在實踐中,世界模型的實現(xiàn)形式多種多樣,從小規(guī)模的基于狀態(tài)的動力學(xué)模型,到大型的基于動作條件的視頻預(yù)測模型都有。但無論形式如何,大多數(shù)模型都會嘗試「還原未來的畫面」。這種方法雖然常常能生成逼真的圖像,但卻不一定適合用來做決策。原因在于:圖像看起來再真實,也可能漏掉一些真正關(guān)鍵的語義細節(jié) —— 比如兩個物體是否真的發(fā)生了接觸。
過去有一些方法嘗試只建模「與任務(wù)相關(guān)」的信息,但這類方法往往需要額外的假設(shè),比如必須知道獎勵函數(shù)或任務(wù)中某些已知因素。這讓它們在實際使用中變得不太靈活。
如果像素信息并非規(guī)劃所必需,那么做出行動決策所真正需要的是什么?
這篇論文提出:能夠預(yù)測關(guān)于未來結(jié)果的語義信息就足夠了。世界模型不應(yīng)再專注于預(yù)測原始的視覺幀,而應(yīng)捕捉與任務(wù)相關(guān)的對象及其交互信息,例如:「機械臂是否更靠近目標(biāo)物體?」「紅色方塊是否傾倒?」「藍色球是否被拾起?」
論文將這種信息建模為一個關(guān)于未來的視覺問答(VQA)問題,利用這樣一個事實:任何目標(biāo)結(jié)果都可以用一系列「是 / 否」問題來表達。換言之,世界建模問題可以被重新定義為一個關(guān)于未來結(jié)果的 VQA 問題。
目前已有一類模型具備完善的視覺問答工具體系,即視覺語言模型(VLM)。在世界建模任務(wù)中,VLM 具有兩大優(yōu)勢:
一是,它們通過大規(guī)模預(yù)訓(xùn)練獲得了強大的視覺問答能力與廣泛的泛化能力;
二是,它們編碼了關(guān)于任務(wù)與場景語義特征的先驗知識。
這些優(yōu)勢使得前沿的 VLM 能夠提出與任務(wù)相關(guān)的問題,并在給定靜態(tài)觀測時給出可靠的答案。然而,它們?nèi)狈ξ磥斫Y(jié)果的預(yù)測能力,這限制了它們在決策任務(wù)中的直接應(yīng)用。
為此,新論文提出了「語義世界模型(Semantic World Model, SWM)」的概念。SVM 是一種具備泛化能力的世界模型,它以動作條件的視覺語言模型形式存在,能夠回答關(guān)于未來動作語義效果的問題。

- 論文標(biāo)題:SEMANTIC WORLD MODELS
- 論文鏈接:https://arxiv.org/pdf/2510.19818
- 項目鏈接:https://weirdlabuw.github.io/swm/
與傳統(tǒng)預(yù)測未來幀的世界模型不同,SWM 在給定當(dāng)前觀測(圖像表示)與動作序列的情況下,回答關(guān)于未來的自然語言問題。
如圖 1 所示,模型輸入包括:當(dāng)前觀測、一系列擬執(zhí)行的動作,以及一個關(guān)于未來的自然語言提問。模型通過理解這些動作在環(huán)境中將帶來的后果,生成相應(yīng)的文本回答。

由于 SWM 本質(zhì)上是一個與任務(wù)無關(guān)的世界模型,它可以在對通用序列數(shù)據(jù)質(zhì)量要求極低的情況下進行訓(xùn)練,這些數(shù)據(jù)包括游戲數(shù)據(jù)和非最優(yōu)數(shù)據(jù)。訓(xùn)練數(shù)據(jù)可以很容易地從任何(專家或非專家)數(shù)據(jù)語料庫中獲取,其格式為當(dāng)前觀測結(jié)果、行動、(關(guān)于未來的)問題以及預(yù)期答案。
通過 SWM 來推理未來結(jié)果,AI 就能夠在動作空間中進行靈活的、開放世界的多任務(wù)規(guī)劃。
當(dāng)任務(wù)以自然語言描述時,系統(tǒng)可以有兩種方式理解目標(biāo):要么利用預(yù)訓(xùn)練好的 VLM 自動解析任務(wù)意圖,要么由人類將任務(wù)拆解成一組文本化的「問題 — 期望答案」對。在得到這組問答之后,SWM 就可以用來規(guī)劃動作,使得未來得到這些期望答案的可能性最大化。
給定自然語言形式的任務(wù)說明,人們既可以利用預(yù)訓(xùn)練的 VLM,也可以手動將任務(wù)說明分解為一組問題以及文本形式的預(yù)期答案。有了這個問答集,SWM 就可以被用來規(guī)劃動作,從而極有可能在未來得出這些問題的預(yù)期答案。
盡管有大量技術(shù)可用于這種規(guī)劃,但本研究表明,它與零階基于采樣的方法以及一階梯度規(guī)劃方法都兼容,這些方法會針對預(yù)期似然目標(biāo)進行優(yōu)化。研究表明,這些規(guī)劃方法在計算上是可行的,相比常規(guī)的動作選擇方法,能在測試時帶來顯著改進。此外,它還展示了此類規(guī)劃方法對多步驟長程問題的可擴展性。
在實驗方面,SWM 在兩個常用的多任務(wù)仿真環(huán)境 ——Language Table(LangTable)與 OGBench—— 上進行了評估。結(jié)果表明:SWM 能夠準(zhǔn)確回答關(guān)于未來結(jié)果的問題,并能泛化到新場景中。SWM 可以與基于采樣的標(biāo)準(zhǔn)規(guī)劃技術(shù)以及基于梯度的改進技術(shù)相結(jié)合,通過測試時優(yōu)化實現(xiàn)顯著的策略改進,從而解決各種機器人任務(wù)。
綜上所述,SWM 代表了一類新型的世界模型,它利用 VLM 的豐富預(yù)訓(xùn)練知識,實現(xiàn)了可落地、靈活且可擴展的機器人控制。

語義世界模型概覽
下圖 2 展示了語義世界模型的概況。SWM 是一種視覺語言模型,經(jīng)過調(diào)整后能夠回答與未來相關(guān)的問題,這些問題由用于調(diào)整模型的動作所決定。通過一系列問題和期望的答案,其預(yù)測可以轉(zhuǎn)化為規(guī)劃信號,并迭代優(yōu)化動作序列。

數(shù)據(jù)集生成
為了訓(xùn)練一個能夠回答關(guān)于未來問題的世界模型,本文生成了一個狀態(tài) - 動作 - 問題 - 答案(SAQA)數(shù)據(jù)集。圖 3 展示了該數(shù)據(jù)集中一個單獨的狀態(tài)與多個問題和答案的配對情況。

架構(gòu)概覽
SWM 是一個能夠在給定動作條件下回答關(guān)于未來事件問題的模型。具備這種能力的模型本質(zhì)上是一種帶有動作條件的視覺問答模型。因此,從大型預(yù)訓(xùn)練視覺語言模型(VLM)出發(fā),將其泛化能力遷移到機器人任務(wù)中是很自然的做法。這種 SWM 架構(gòu)基于開源的視覺語言模型 PaliGemma。
該模型包含三個核心預(yù)訓(xùn)練組件:一個基于 Transformer 的自回歸語言模型(其 token 嵌入大小為 d_tok)、一個視覺編碼器 v_?(其特征大小為 d_img)以及一個投影矩陣
。PaliGemma 架構(gòu)建立在兩個單獨訓(xùn)練的組件之上:Gemma 大語言模型和 SigLIP 圖像編碼器 V_sc。W 用于從 Z_sc 投影到 Z_LLM,其中 Z_sc 是 v_? 的特征空間,Z_LLM 是大語言模型的輸入 token 嵌入空間。本文使用 PaliGemma 的 30 億參數(shù)檢查點作為基礎(chǔ)模型。
為了讓基礎(chǔ)模型能夠就「某一特定未來(由行動產(chǎn)生)」回答問題,模型必須以這些行動為條件。為此,作者引入一個新的投影矩陣
,它將單個動作
映射到與 W 投影矩陣類似的潛空間 Z_LLM 中。
給定數(shù)據(jù)集 D_SAQA 中的一個元組 (S_i, a_{i:j}, Q_{S_j}, A_{S_j}),輸入序列通過將圖像嵌入、動作嵌入和問題 token 嵌入拼接而成:

隨后,模型以端到端方式微調(diào),通過優(yōu)化標(biāo)準(zhǔn)交叉熵損失
來預(yù)測目標(biāo)答案 A_{S_j}。
這種訓(xùn)練過程使模型能夠在語言空間中捕捉環(huán)境的動態(tài),從而在無需顯式生成像素級表征的情況下回答有關(guān)未來狀態(tài)的問題。
實驗結(jié)果
SWM 是否是一個有效的決策世界模型?
首先,作者通過在 LangTable 和 OGBench 任務(wù)上將基于采樣的規(guī)劃方法 MPPI 應(yīng)用于 SWM 模型,對 SWM 的規(guī)劃能力進行評估。
如表 2 所示,可以直接在語義世界模型之上使用基于采樣的規(guī)劃方法進行規(guī)劃,在兩個環(huán)境中的到達和方塊分離任務(wù)上都取得了接近完美的成功率

然而,對于大型模型而言,基于采樣的規(guī)劃方法計算成本高昂,在需要更多樣本的更具挑戰(zhàn)性的任務(wù)上運行 MPPI 并不可行。因此,對于更復(fù)雜的任務(wù),考慮這樣一種場景:由一個基礎(chǔ)策略生成候選軌跡,再利用 SWM 和基于梯度的優(yōu)化對其進行細化。如圖 5 所示,該方法能夠?qū)蜻x軌跡進行細化,并相比基礎(chǔ)策略取得顯著提升。在 LangTable 上,SWM 相比基礎(chǔ)策略的平均性能從 14.4% 提升至 81.6%;在 OGBench 上,從 45.33% 提升至 76%。SWM 在所有任務(wù)上也均優(yōu)于 AVD 和 IDQL 基線,展示了其在規(guī)劃方面的有效性。

SWM 還通過先選擇子目標(biāo),再圍繞該子目標(biāo)進行規(guī)劃,展現(xiàn)出處理更長程任務(wù)的能力。如表 1 所示,在多步任務(wù)上,SWM 的平均策略改進幅度達 52.0%,優(yōu)于 AVD 基線。

次優(yōu)數(shù)據(jù)是否能提高建模性能?
從表 3 可以看出,混入次優(yōu)數(shù)據(jù)比僅使用專家數(shù)據(jù)進行訓(xùn)練能提高準(zhǔn)確率。SWM 僅通過次優(yōu)數(shù)據(jù)訓(xùn)練也能達到中等水平的性能,這表明次優(yōu)數(shù)據(jù)在訓(xùn)練語義世界模型方面是多么有效。

SWM 是否保留了基礎(chǔ) VLM 的泛化能力?
為了衡量 VLM 預(yù)訓(xùn)練對泛化能力的影響,作者在組合式和場景分布外環(huán)境中對 SWM 進行了評估,相關(guān)環(huán)境如圖 6 所示。

為了衡量語義組合泛化能力,在 LangTable 環(huán)境中引入了一個新的彩色方塊,并修改了現(xiàn)有的方塊顏色 - 形狀組合。表 4 顯示,在這些條件下,與基礎(chǔ)策略相比,SWM 平均提高了 20.0%。這一性能表明,SWM 能夠保留部分預(yù)訓(xùn)練知識,從而實現(xiàn)組合泛化。

為了測試對背景變化的魯棒性,作者將 OGBench 的背景顏色改為一種新的組合。與基礎(chǔ)策略相比,SWM 的性能再次提升了 20%,并且能夠泛化到這些條件,而 AVD 方法則無法做到這一點。
模型的內(nèi)部表征是否關(guān)注與任務(wù)相關(guān)的信息?
為了理解模型所學(xué)的表征,作者從模型的一個中間層可視化了從語言 token 到圖像 patch 的注意力圖。如圖 7 所示,模型會根據(jù)語言提示正確關(guān)注圖像中與任務(wù)相關(guān)的位置。例如,當(dāng)被問到「紅色的月亮是否在接觸藍色的立方體?」時,與這些物體對應(yīng)的圖像 patch 上的注意力得分更高。盡管從未在涉及兩個以上物體的問題上進行過微調(diào),但研究發(fā)現(xiàn),當(dāng)被問及此類問題時,該模型能夠正確關(guān)注三個物體。這表明該模型繼承了預(yù)訓(xùn)練 VLM 的泛化能力。































